Towards Grasping Task: System and Control of an Aerial Manipulator
ZHANG Guangyu1,2, HE Yuqing1, DAI Bo1,2, GU Feng1, YANG Liying1, HAN Jianda1, LIU Guangjun3
1. State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China;
3. Ryerson University, Toronto M5B 2K3, Canada
张广玉, 何玉庆, 代波, 谷丰, 杨丽英, 韩建达, 刘光军. 面向抓取作业的飞行机械臂系统及其控制[J]. 机器人, 2019, 41(1): 19-29.DOI: 10.13973/j.cnki.robot.180127.
ZHANG Guangyu, HE Yuqing, DAI Bo, GU Feng, YANG Liying, HAN Jianda, LIU Guangjun. Towards Grasping Task: System and Control of an Aerial Manipulator. ROBOT, 2019, 41(1): 19-29. DOI: 10.13973/j.cnki.robot.180127.
Abstract:Towards target grasping by an aerial manipulator, an aerial manipulator system composed of a hex-rotor and a 7-DoF (degree of freedom) manipulator is presented, for which a separated control strategy is adopted, that is, the aerial vehicle and the manipulator are controlled separately. The variations of the system CoM (center of mass), inertia matrix caused by the manipulator movement and the corresponding derivatives are used to estimate the disturbing forces and moments on the aerial vehicle exerted by the manipulator. To attenuate the effect of the manipulator disturbance on the flight control performance of hex-rotor, a disturbance compensation H∞ robust flight controller is designed. The experiment results show that the disturbance compensation H∞ robust controller can obviously improve the flight performance of the aerial vehicle when the manipulator is moving, comparing with the controller without disturbance compensation. Finally, aerial grasping experiments are conducted to validate the reliability of the proposed aerial manipulator system.
[1] 杨斌,何玉庆,韩建达,等.作业型飞行机器人研究现状与展望[J].机器人,2015,37(5):628-640.Yang B, He Y Q, Han J D, et al. Survey on aerial manipulator systems[J]. Robot, 2015, 37(5):628-640.
[2] 宋大雷,孟祥冬,齐俊桐,等.3自由度旋翼飞行机械臂系统动力学建模与预测控制方法[J].机器人,2015,37(2):152-160.Song D L, Meng X D, Qi J T, et al. Strategy of dynamic modeling and predictive control on 3-DoF rotorcraft aerial manipulator system[J]. Robot, 2015, 37(2):152-160.
[3] Kutia J R, Stol K A, Xu W L. Initial flight experiments of a canopy sampling aerial manipulator[C]//International Conference on Unmanned Aircraft Systems. Piscataway, USA:IEEE, 2016:1359-1365.
[4] Torre A, Mengoli D, Naldi R, et al. A prototype of aerial manipulator[C]//IEEE/RSJ International Conference on IntelligentRobots and Systems. Piscataway, USA:IEEE, 2012:2653-2654.
[5] Korpela C, Orsag M, Oh P. Towards valve turning using a dual-arm aerial manipulator[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2014:3411-3416.
[6] Bartelds T, Capra A, Hamaza S, et al. Compliant aerial manipulators:Toward a new generation of aerial robotic workers[J]. IEEE Robotics and Automation Letters, 2016, 1(1):477-483.
[7] Kamel M, Alexis K, Siegwart R. Design and modeling of dexterous aerial manipulator[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2016:4870-4876.
[8] Huber F, Kondak K, Krieger K, et al. First analysis and experiments in aerial manipulation using fully actuated redundantrobot arm[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2013:3452-3457.
[9] Thomas J, Loianno G, Polin J, et al. Toward autonomous avian-inspired grasping for micro aerial vehicles[J]. Bioinspiration & Biomimetics, 2014, 9(2):No.025010.
[10] Yang B, He Y Q, Han J D, et al. Rotor-flying manipulator:Modeling, analysis, and control[J]. Mathematical Problems in Engineering, 2014:No.492965.
[11] Lippiello V, Ruggiero F. Cartesian impedance control of a UAV with a robotic arm[J]. IFAC Proceedings Volumes, 2012, 10(1):704-709.
[12] Lippiello V, Ruggiero F. Exploiting redundancy in Cartesian impedance control of UAVs equipped with a robotic arm[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2012:3768-3773.
[13] Sharifi M, Sayyaadi H. Nonlinear robust adaptive Cartesian impedance control of UAVs equipped with a robot manipulator[J]. Advanced Robotics, 2015, 29(3):171-186.
[14] Yang H, Lee D. Dynamics and control of quadrotor with roboticmanipulator[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2014:5544-5549.
[15] Garimella G, Kobilarov M. Towards model-predictive controlfor aerial pick-and-place[C]//IEEE International Conference onRobotics and Automation. Piscataway, USA:IEEE, 2015:4692-4697.
[16] Caccavale F, Giglio G, Muscio G, et al. Adaptive control for UAVs equipped with a robotic arm[J]. IFAC Proceedings Volumes, 2014, 19:11049-11054.
[17] Jimenez-Cano A E, Heredia G, Bejar M, et al. Modelling and control of an aerial manipulator consisting of an autonomous helicopter equipped with a multi-link robotic arm[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2016, 230(10):1860-1870.
[18] Kondak K, Krieger K, Albu-Schäffer A, et al. Closed-loop behavior of an autonomous helicopter equipped with a robotic arm for aerial manipulation tasks[J]. International Journal of Advanced Robotic Systems, 2013, 10:No.145.
[19] Khalifa A, Fanni M. A new quadrotor manipulation system:Modeling and point-to-point task space control[J]. InternationalJournal of Control, Automation and Systems, 2017, 15(3):1434-1446.
[20] Fanni M, Khalifa A. A new 6-DOF quadrotor manipulation system:Design, kinematics, dynamics and control[J]. IEEE/ASME Transactions on Mechatronics, 2017, 22(3):1315-1326.
[21] 钟杭,王耀南,李玲,等.旋翼飞行机械臂建模及动态重心补偿控制[J].控制理论与应用,2016,33(3):311-320.Zhong H, Wang Y N, Li L, et al. Rotor-flying manipulator modeling and control with dynamic compensation for gravity offset[J]. Control Theory & Applications, 2016, 33(3):311-320.
[22] Shabana A A. Dynamics of multibody systems[M]. Cambridge, UK:Cambridge University Press, 2005.
[23] Spong M W, Vidyasagar M. Robot dynamics and control[M]. Hoboken, USA:John Wiley & Sons, 2008.
[24] Han J D, He Y Q, Xu W L. Angular acceleration estimation and feedback control:An experimental investigation[J]. Mechatronics, 2007, 17(9):524-532.
[25] Kendoul F, Fantoni I, Lozano R. Asymptotic stability of hierarchical inner-outer loop-based flight controllers[J]. IFAC Proceedings Volumes, 2008, 17(1):1741-1746.
[26] English J D, Maciejewski A A. On the implementation of velocity control for kinematically redundant manipulators[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part A:Systems and Humans, 2000, 30(3):233-237.
[27] Dollar A M, Howe R D. The highly adaptive SDM hand:Design and performance evaluation[J]. International Journal of Robotics Research, 2010, 29(5):585-597.