王龙飞, 李旭, 张丽艳, 叶南. 工业机器人定位误差规律分析及基于ELM算法的精度补偿研究[J]. 机器人, 2018, 40(6): 843-851.DOI: 10.13973/j.cnki.robot.170536.
WANG Longfei, LI Xu, ZHANG Liyan, YE Nan. Analysis of the Positioning Error of Industrial Robots and Accuracy Compensation Based on ELM Algorithm. ROBOT, 2018, 40(6): 843-851. DOI: 10.13973/j.cnki.robot.170536.
Abstract:To improve the absolute positioning accuracy of industrial robots in automatic drilling of aircraft parts, an optimized compensation method based on extreme learning machine (ELM) algorithm is proposed to establish the relationship between the nominal position and the actual position of the robot flange center. Firstly, the error variation of the absolute positioning error of the robot in the axial directions of the robot coordinate system is analyzed based on the spatial mesh sampling method, and the feasibility of modeling and compensating the positioning error is verified. Then, the error compensation model based on ELM algorithm is established, and the number of hidden layer neurons is optimized for error model training. Experimental results indicate that the absolute positioning error shows different characteristics in different axial directions. The robot absolute positioning error before compensation is 0.29 mm~0.58 mm, and the average value is 0.41 mm. After compensation, it is reduced to 0.04 mm~0.32 mm, and the average value is 0.18 mm. In addition, the compensation modeling based on ELM algorithm is of high speed and good generalization performance.
[1] 焦国太,李庆,冯永和,等.机器人位姿误差的综合补偿[J].华北工学院学报,2003,24(2):104-107.Jiao G T, Li Q, Feng Y H, et al. A compensation method of the robot pose error[J]. Journal of North China Institute of Technology, 2003, 24(2):104-107.
[2] 周学才,郑世雄.机器人动态位姿误差在工作空间的补偿算法[J].机器人,1989,11(5):14-19.Zhou X C, Zheng S X. Compensation algorithm of robot dynamic pose error in workspace[J]. Robot, 1989, 11(5):14-19.
[3] 任永杰,邾继贵,杨学友,等.利用激光跟踪仪对机器人进行标定的方法[J].机械工程学报,2007,43(9):195-200.Ren Y J, Zhu J G, Yang X Y, et al. Method of robot calibration based on laser tracker[J]. Journal of Mechanical Engineering, 2007, 43(9):195-200.
[4] 解则晓,辛少辉,李绪勇,等.基于单目视觉的机器人标定方法[J].机械工程学报,2011,47(5):35-39.Xie Z X, Xin S H, Li X Y, et al. Method of robot calibration based on monocular vision[J]. Journal of Mechanical Engineering, 2011, 47(5):35-39.
[5] Wu W L, Wurst K H, Watanabe T, et al. Calibrating a modular robotic joint using neural network approach[C]//IEEE International Conference on Neural Networks. Piscataway, USA:IEEE, 1994:2720-2725.
[6] Zhang X L, Lewis J, N-Nagy F L. Inverse robot calibration using artificial neural network[J]. Engineering Applications of Artificial Intelligence, 1996, 9(1):83-93.
[7] Zhong X L, Lewis J M, Rea H. Neuro-accuracy compensation for industrial robots[C]//IEEE International Conference on Neural Networks. Piscataway, USA:IEEE, 1994:2797-2802.
[8] 周炜,廖文和,田威,等.基于粒子群优化神经网络的机器人精度补偿方法研究[J].中国机械工程,2013,24(2):174-179.Zhou W, Liao W H, Tian W, et al. Method of industrial robot accuracy compensation based on particle swarm optimization neural network[J]. China Mechanical Engineering, 2013, 24(2):174-179.
[9] 周炜,廖文和,田威.基于空间插值的工业机器人精度补偿方法理论与试验[J].机械工程学报,2013, 49(3):42-48.Zhou W, Liao W H, Tian W. Theory and experiment of industrial robot accuracy compensation method based on spatial interpolation[J]. Journal of Mechanical Engineering, 2013, 49(3):42-48.
[10] 史晓佳,张福民,曲兴华,等.KUKA工业机器人位姿测量与在线误差补偿[J].机械工程学报,2017,53(8):1-7.Shi X J, Zhang F M, Qu X H, et al. Position and attitude measurement and online errors compensation for KUKA industrial robots[J]. China Mechanical Engineering, 2017, 53(8):1-7.
[11] 何庆稀,游震洲,孔向东.一种基于位姿反馈的工业机器人定位补偿方法[J].中国机械工程,2016,27(7):872-876.He Q X, You Z Z, Kong X D. Positioning error compensation method of industrial robot based on closed-loop feedback of position and orientation[J]. China Mechanical Engineering, 2016, 27(7):872-876.
[12] 曲巍崴,董辉跃,柯映林.机器人辅助飞机装配制孔中位姿精度补偿技术[J].航空学报,2011,32(10):1951-1960.Qu W W, Dong H Y, Ke Y L. Pose accuracy compensation technology in robot-aided aircraft assembly drilling process[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(10):1951-1960.
[13] 王小川,史峰,郁磊,等.MATLAB神经网络43个案例分析[M].北京:北京航空航天大学出版社,2013:246.Wang X C, Shi F, Yu L, et al. 43 cases analysis of MATLAB neural network[M]. Beijing:Beijing University of Aeronautics and Astronautics Press, 2013:246.
[14] 甘露.极限学习机的研究与应用[D].西安:西安电子科技大学,2014.Gan L. Research and application of extreme learning machine[D]. Xi'an:Xidian University, 2014.