李梦梦, 李原, 王庆林. EAP柔性智能驱动材料的建模、控制及应用研究进展[J]. 机器人, 2018, 40(5): 660-672.DOI: 10.13973/j.cnki.robot.180210.
LI Mengmeng, LI Yuan, WANG Qinglin. Research Progress on Modeling, Control and Application of EAPFlexible Intelligent Driving Materials. ROBOT, 2018, 40(5): 660-672. DOI: 10.13973/j.cnki.robot.180210.
Abstract:The research progresses of modeling, control and application of electro-active polymer (EAP) materials are systematically reviewed. Firstly, the classification and electrical actuation principle of the existing EAP materials are summarized. Then, the establishment of constitutive, hysteresis and creep models of EAP driving materials and the design of controller are discussed, and the applications of EAP intelligent structures in bionic robot, aerospace and energy fields are summarized. Finally, the research problems of EAP in material performance, intelligent structure design, system modeling and motion control strategy are pointed out, and the future research directions are also forecasted.
[1] 王国彪,陈殿生,陈科位,等.仿生机器人研究现状与发展趋势[J].机械工程学报,2015,51(13):27-44. Wang G B, Chen D S, Chen K W, et al. The current researchstatus and development strategy on biomimetic robot[J]. Journal of Mechanical Engineering, 2015, 51(13):27-44.
[2] Trivedi D, Rahn C D, Kier W M, et al. Soft robotics:Biological inspiration, state of the art, and future research[J]. Applied Bionics and Biomechanics, 2008, 5(3):99-117.
[3] Carpi F, Mannini A, De Rossi D. Elastomeric contractile actuators for hand rehabilitation splints[M]//Proceedings of SPIE, Vol.6927. Bellingham, USA:SPIE, 2008:No.692705.
[4] Chiba S, Waki M. Extending applications of dielectric elastomer artificial muscles to wireless communication systems[M]//Recent Advances in Wireless Communications and Networks. London, UK:InTech, 2011:435-454.
[5] Chiba S, Waki M, Wada T, et al. Consistent ocean wave energyharvesting using electroactive polymer (dielectric elastomer) artificial muscle generators[J]. Applied Energy, 2013, 104(2):497-502.
[6] Yoo S, Reitelshöfer S, Landgraf M, et al. Artificial muscles,made of dielectric elastomer actuators-A promising solution for inherently compliant future robots[M]//Soft Robotics:Transferring Theory to Application. Berlin, Germany:Springer, 2015:33-41.
[7] Jones R W, Sarban R. Grey-box model-based vibration isolation using a dielectric elastomer actuator[J]. Asian Journal of Control, 2013, 15(6):1599-1612.
[8] Palakodeti R, Kessler M R. Influence of frequency and prestrain on the mechanical efficiency of dielectric electroactive polymer actuators[J]. Materials Letters, 2006, 60(29-30):3437-3440.
[9] Ma W, Cross L E. An experimental investigation of electromechanical response in a dielectric acrylic elastomer[J]. Applied Physics A, 2004, 78(8):1201-1204.
[10] Mirfakhrai T, Madden J D W, Baughman R H. Polymer artificial muscles[J]. Materials Today, 2007, 10(4):30-38.
[11] Romasanta L J, Lopez-Manchado M A, Verdejo R. Increasingthe performance of dielectric elastomer actuators:A review from the materials perspective[J]. Progress in Polymer Science, 2015, 51:188-211.
[12] Su J, Harrison J S, Clair S, et al. Electrostrictive graft elastomers:US6515077 B1[P]. 2003-02-04.
[13] Finkelmann H, Kock H J, Rehage G. Investigations on liquidcrystalline polysiloxanes. 3. Liquid crystalline elastomers-A new type of liquid crystalline material[J]. Makromolekulare Chemie-Rapid Communications, 1981, 2(4):317-322.
[14] 李磊.离子聚合物金属复合材料制备及其结构与性能研究[D].哈尔滨:哈尔滨理工大学,2008. Li L. Preparation of ionic polymer-metal composite and research on its structure and property[D]. Harbin:Harbin University of Science and Technology, 2008.
[15] Schmidt-Rohr K, Chen Q. Parallel cylindrical water nanochannels in Nafion fuel-cell membranes[J]. Nature Materials, 2008, 7(1):75-83.
[16] Baughman R H, Shacklette L W, Elsenbaumer R L, et al. Conducting polymer electromechanical actuators[M]//Conjugated Polymeric Materials:Opportunities in Electronics, Optoelectronics, and Molecular Electronics. Dordrecht, Netherlands:Springer, 1990:559-582.
[17] Baughman R H, Cui C X, Zakhidov A A. Carbon nanotube actuators[J]. Science, 1999, 284(5418):1340-1344.
[18] Kurosu H, Shibuya T, Yasunaga H, et al. Spatial information on a polymer gel as studied by 1H NMR imaging Ⅲ. Shrinkage by the application of an electric field to a composite polymer gel[J]. Polymer Journal, 1996, 28(1):80-85.
[19] Brochu P, Pei Q B. Advances in dielectric elastomers for actuators and artificial muscles[J]. Macromolecular Rapid Communications, 2010, 31(1):10-36.
[20] Chen Z, Um T I, Bart-Smith H. A novel fabrication of ionicpolymer-metal composite membrane actuator capable of 3-dimensional kinematic motions[J]. Sensors and Actuators, A:Physical, 2011, 168(1):131-139.
[21] 朱银龙,王化明.介电型电活性聚合物驱动器机电耦合特性[J].农业机械学报,2013,44(12):301-306. Zhu Y L, Wang H M. Electromechanical characteristic of dielectric electroactive polymer actuator[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(12):301-306.
[22] 刘立武.电活性介电弹性体的本构理论和稳定性[D].哈尔滨:哈尔滨工业大学,2011. Liu L W. Constitutive law and stability of electroactive dielectric elastomers[D]. Harbin:Harbin Institute of Technology, 2011.
[23] 罗华安,王化明,朱银龙.一种介电型电活性聚合物材料的非线性超弹性模型[J].机械工程学报,2016,52(14):73-78. Luo H A, Wang H M, Zhu Y L. A nonlinear hyperelastic modelfor dielectric electroactive polymer materials[J]. Journal of Mechanical Engineering, 2016, 52(14):73-78.
[24] Iskandarani Y, Karimi H R. Dynamic characterization for the dielectric electroactive polymer fundamental sheet[J]. International Journal of Advanced Manufacturing Technology, 2013, 66(9-12):1457-1466.
[25] Schmidt A, Bergamini A, Jordi C, et al. Electro-mechanical modeling of dielectric elastomer transducers with micro-structured electrodes[M]//Proceedings of SPIE, Vol.7976. Bellingham, USA:SPIE, 2011:No. UNSP 79760L.
[26] Koh S J A, Keplinger C, Li T F, et al. Dielectric elastomer generators:How much energy can be converted?[J]. IEEE/ASME Transactions on Mechatronics, 2011, 16(1):33-41.
[27] Park H S, Suo Z G, Zhou J S, et al. A dynamic finite element method for inhomogeneous deformation and electromechanical instability of dielectric elastomer transducers[J]. International Journal of Solids and Structures, 2012, 49(15-16):2187-2194.
[28] Jiles D C, Atherton D L. Ferromagnetic hysteresis[J]. IEEE Transactions on Magnetics, 1983, 19(5):2183-2185.
[29] Jiles D C, Atherton D L. Theory of ferromagnetic hysteresis[J]. Journal of Applied Physics, 1984, 55(6):2115-2120.
[30] Baghel A P S, Kulkarni S V. Parameter identification of the Jiles-Atherton hysteresis model using a hybrid technique[J].IET Electric Power Applications, 2012, 6(9):689-695.
[31] Raghunathan A, Melikhov Y, Snyder J E, et al. Modeling the temperature dependence of hysteresis based on Jiles-Atherton theory[J]. IEEE Transactions on Magnetics, 2009, 45(10):3954-3957.
[32] Oh J H, Bernstein D S. Semilinear Duhem model for rate-independent and rate-dependent hysteresis[J]. IEEE Transactions on Automatic Control, 2005, 50(5):631-645.
[33] Oh J H, Bernstein D S. Piecewise linear identification for the rate-independent and rate-dependent Duhem hysteresis models[J]. IEEE Transactions on Automatic Control, 2007, 52(3):576-582.
[34] 陈辉,谭永红,周杏鹏,等.压电陶瓷执行器的动态模型辨识与控制[J].光学精密工程,2012,20(1):88-95. Chen H, Tan Y H, Zhou X P, et, al. Identification and control of dynamic modeling for piezoceramic actuator[J]. Optics and Precision Engineering, 2012, 20(1):88-95.
[35] Wen Y K. Method for random vibration of hysteretic systems[J]. Journal of the Engineering Mechanics Division, 1976, 102(2):249-263.
[36] Sarban R, Oubaek J, Kristjánsdóttir G R, et al. Hysteresis modelling of a core-free EAP tubular actuator[M]//Proceedings of SPIE, Vol.7287. Bellingham, USA:SPIE, 2009:No.728717.
[37] Wang Z Y, Zhang Z, Mao J Q, et al. A Hammerstein-based model for rate-dependent hysteresis in piezoelectric actuator[C]//24th Chinese Control and Decision Conference. Piscataway, China:IEEE, 2012:1391-1396.
[38] 喻曹丰.基于GMA的二自由度精密微定位平台及控制系统研究[D].淮南:安徽理工大学,2017. Yu C F. Research on two degree of freedom precision micro positioning platform and control system based on GMA[D]. Huainan:Anhui University of Science & Technology, 2017.
[39] Dimitropoulos P D, Stamoulis G I, Hristoforou E. A 3-D hybrid Jiles-Atherton/Stoner-Wohlfarth magnetic hysteresis model for inductive sensors and actuators[J]. IEEE Sensors Journal, 2006, 6(3):721-736.
[40] Hu H, Ben Mrad R. On the classical Preisach model for hysteresis in piezoceramic actuators[J]. Mechatronics, 2003, 13(2):85-94.
[41] Mayergoyz I D. Mathematical models of hysteresis[M]. New York, USA:Springer-Verlag, 1991.
[42] 念龙生,隆志力,王哲琳,等.一种改进Preisach模型数值实现方法[J].压电与声光,2014,36(2):255-259. Nian L S, Long Z L, Wang Z L, et al. An improved numerical implementation of Preisach model[J]. Piezoelectrics & Acoustooptics, 2014, 36(2):255-259.
[43] Nam D N C, Ahn K K. Identification of an ionic polymer metal composite actuator employing Preisach type fuzzy NARX model and particle swarm optimization[J]. Sensors and Actuators, A:Physical, 2012, 183(8):105-114.
[44] Klein O, Krejci P. Outwards pointing hysteresis operators and asymptotic behaviour of evolution equations[J]. Nonlinear Analysis-Real World Applications, 2003, 4(5):755-785.
[45] Al Janaideh M, Feng Y, Rakheja S, et al. Generalized Prandtl-Ishlinskii hysteresis:Modeling and robust control for smart actuators[C]//IEEE Conference on Decision and Control. Piscataway, USA:IEEE, 2009:7279-7284.
[46] Zheng J W, Wang Q L, Li Y. Adaptive compensation and control for uncertain systems with Prandtl-Ishlinskii hysteresis[C]//27th Control and Decision Conference. Piscataway, USA:IEEE, 2015:1344-1349.
[47] Truong B N M, Ahn K K. Modeling, control and experimentalinvestigation of time-average flow rate of a DEAP actuator based diaphragm pump[J]. International Journal of Precision Engineering and Manufacturing, 2017, 18(8):1119-1129.
[48] 张伟,柳萍,刘青松,等.基于模糊树的Hammerstein-like模型对超磁致伸缩作动器的建模与控制[J].振动与冲击,2013,32(15):184-189, 208. Zhang W, Liu P, Liu Q S, et al. Modeling and control of giant magnetostrictive actuator based on a Hammerstein-like model by using fuzzy tree method[J]. Journal of Vibration and Shock, 2013, 32(15):184-189, 208.
[49] 张建刚,毛剑琴,夏天,等.模糊树模型及其在复杂系统辨识中的应用[J].自动化学报, 2000, 26(3):378-381. Zhang J G, Mao J Q, Xia T, et al. Fuzzy-tree model and its applications to complex system modeling[J]. Acta Automatica Sinica, 2000, 26(3):378-381.
[50] Bergqvist A, Engdahl G. A stress-dependent magnetic Preisach hysteresis model[J]. IEEE Transactions on Magnetics, 1991, 27(6):4796-4798.
[51] Guo Z K, Fang A L, Guan X P, et al. Modeling for stress-dependent hysteresis nonlinearity in giant magnetostrictive actuators[C]//32nd Chinese Control Conference. Piscataway,USA:IEEE, 2013:2002-2006.
[52] Ma Y H, Mao J Q. On modeling and tracking control for asmart structure with stress-dependent hysteresis nonlinearity[J]. Acta Automatica Sinica, 2010, 36(11):1611-1619.
[53] Sutor A, Rupitsch S J, Bi S, et al. A modified Preisach hysteresis operator for the modeling of temperature dependent magnetic material behavior[J]. Journal of Applied Physics, 2011, 109(7):No.07D338.
[54] Hsu J T, Ngo K D T. A Hammerstein-based dynamic modelfor hysteresis phenomenon[J]. IEEE Transactions on Power Electronics, 1997, 12(3):406-413.
[55] Hao L N, Li Z. Modeling and adaptive inverse control of hysteresis and creep in ionic polymer-metal composite actuators[J]. Smart Materials and Structures, 2010, 19(2):No.025014.
[56] 李智.基于IPMC迟滞蠕变特性的自适应逆控制研究[D].沈阳:东北大学,2009. Li Z. Research on adaptive inverse control for hysteresis and creep characteristics of IPMC[D]. Shenyang:NortheasternUniversity, 2009.
[57] Truong B N M, Ahn K K. Modeling and control of hysteresisfor DEAP actuator[J]. Sensors and Actuators, A:Physical, 2013, 201:193-206.
[58] Zhang X L, Tan Y H, Su M Y, et al. Neural networks basedidentification and compensation of rate-dependent hysteresis in piezoelectric actuators[J]. Physica B:Condensed Matter, 2010, 405(12):2687-2693.
[59] Xu K, Zhang Z, Mao J Q. Modeling of stress dependent hysteresis nonlinearity based on fuzzy tree for GMA[C]//IEEE International Conference on Automation and Logistics. Piscataway, USA:IEEE, 2008:331-335.
[60] 江芳彬.大行程纳米级压电陶瓷驱动控制系统研究[D].厦门:华侨大学,2016. Jiang G B. Study on long travel nano-scale piezoelectric actuator control system[D]. Xiamen:Huaqiao University, 2016.
[61] 赵学良.低速大范围下压电执行器动态蠕变特性分析与控制方法研究[D].济南:山东大学,2016. Zhao X L. Analysis and control o the dynamic creep of stack piezoelectric actuator in low speed and wide range application[D]. Jinan:Shandong University, 2016.
[62] Wang Z Y, Liu L Q, Wang Z D, et al. Unified hysteresis and creep compensation in AFM tip positioning with an extended PI model[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2014:1606-1611.
[63] Zou J, Gu G Y, Zhu L M. Open-loop control of creep and vibration in dielectric elastomer actuators with phenomenological models[J]. IEEE/ASME Transactions on Mechatronics, 2017, 22(1):51-58.
[64] Zhang J S, Ru J, Chen H L, et al. Viscoelastic creep and relaxation of dielectric elastomers characterized by a Kelvin-Voigt-Maxwell model[J]. Applied Physics Letters, 2017, 110(4):No.044104.
[65] Chen Z, Hao L N, Xue D Y, et al. Modeling and control with hysteresis and creep of ionic polymer-metal composite (IPMC) actuators[C]//20th Chinese Control and Decision Conference. Piscataway, USA:IEEE, 2008:865-870.
[66] Rizzello G, Naso D, York A, et al. Modeling, identification, and control of a dielectric electro-active polymer positioning system[J]. IEEE Transactions on Control Systems Technology, 2015, 23(2):632-643.
[67] Aljanaideh O, Al Janaideh M, Rakheja S, et al. Compensation of rate-dependent hysteresis nonlinearities in a magnetostrictive actuator using an inverse Prandtl-Ishlinskii model[J]. Smart Materials and Structures, 2013, 22(2):No.025027.
[68] Wang X J, Alici G, Tan X B. Modeling and inverse feedforward control for conducting polymer actuators with hysteresis[J].Smart Materials and Structures, 2014, 23(2):No.025015.
[69] Zheng J W, Wang Q L, Li Y. Adaptive sliding model control for linear actuator with hysteresis using a Prandtl-Ishlinskii model[C]//IEEE International Conference on Robotics and Biomimetics. Piscataway, USA:IEEE, 2014:2553-2557.
[70] Liu S N, Su C Y, Li Z. Robust adaptive inverse control of a class of nonlinear systems with Prandtl-Ishlinskii hysteresismodel[J]. IEEE Transactions on Automatic Control, 2014, 59(8):2170-2175.
[71] Al Janaideh M, Rakheja S, Su C Y. Inverse rate-dependent Prandtl-Ishlinskii model for hysteresis nonlinearities compensation[C]//IEEE International Conference on Automation and Logistics. Piscataway, USA:IEEE, 2009:102-107.
[72] Qiu D H, Chen Y, Li Y. Adaptive RBF neural network sliding mode control for a DEAP linear actuator[J]. International Journal of Performability Engineering, 2017, 13(4):400-408.
[73] Truong B N, Nam D N C, Ahn K K, et al. Hysteresis modeling and identification of a dielectric electro-active polymer actuator using an APSO-based nonlinear Preisach NARX fuzzy model[J]. Smart Materials and Structures, 2013, 22(9):No.095004.
[74] Esbrook A, Tan X B, Khalil H K. Inversion-free stabilization and regulation of systems with hysteresis using integral action[C]//American Control Conference. Piscataway, USA:IEEE, 2013:6245-6250.
[75] Esbrook A, Tan X B, Khalil H K. Inversion-free stabilization and regulation of systems with hysteresis via integral action[J]. Automatica, 2014, 50(4):1017-1025.
[76] Wang Q Q, Su C Y. Robust adaptive control of a class of nonlinear systems including actuator hysteresis with Prandtl-Ishlinskii presentations[J]. Automatica, 2006, 42(5):859-867.
[77] Su C Y, Wang Q, Chen X K, et al. Backstepping based variablestructure control of a class of nonlinear systems preceded by hysteresis[C]//International Conference on Control and Automation. Piscataway, USA:IEEE, 2005:288-292.
[78] Su C Y, Wang Q Q, Chen X K, et al. Adaptive variable structure control of a class of nonlinear systems with unknown Prandtl-Ishlinskii hysteresis[J]. IEEE Transactions on Automatic Control, 2005, 50(12):2069-2074.
[79] Zou X T, Luo J, Cao C Y. Adaptive control for uncertain hysteretic systems[J]. Journal of Dynamic Systems, Measurement and Control,, 2014, 136(1):No.011011.
[80] Liu L, Wang Z S, Shen Z W. Neural-network-based adaptive dynamic surface control for MIMO systems with unknown hysteresis[C]//IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning. Piscataway, USA:IEEE, 2015:218-223.
[81] Jiang Z G, Wang Q L, Li Y. Generalized predictive control of DEAP actuator based on RBF neural network[C]//11th Asian Control Conference. Piscataway, USA:IEEE, 2017:1632-1637.
[82] 王瑷珲,张强,王东云,等.基于滑模变结构的IPMC跟踪控制系统设计[J].郑州大学学报(工学版),2014,35(6):104-107. Wang A H, Zhang Q, Wang D Y, et al. Position tracking control design for IPMC based on sliding mode variable structure[J]. Journal of Zhengzhou University (Engineering Science), 2014, 35(6):104-107.
[83] Goforth F J, Zheng Q, Gao Z Q. A novel practical control approach for rate independent hysteretic systems[J]. ISA Transactions, 2012, 51(3):477-484.
[84] Zheng Q, Goforth F J. A disturbance rejection based control approach for hysteretic systems[C]//49th Conference on Decision and Control. Piscataway, USA:IEEE, 2010:3748-3753.
[85] Zhao S, Zheng Q L, Gao Z Q. On model-free accommodation of actuator nonlinearities[C]//10th World Congress on Intelligent Control and Automation. Piscataway, USA:IEEE, 2012:2897-2902.
[86] Rich S I, Wood R J, Majidi C. Untethered soft robotics[J]. Nature Electronics, 2018, 1(2):102-112.
[87] 汪洋.基于介电型EAP的地面移动机器人研究[D].南京:南京航空航天大学,2017. Wang Y. Research on ground mobile robot based on dielectric EAP[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2017.
[88] Nguyen C T, Phung H, Nguyen T D, et al. Multiple-degrees-of-freedom dielectric elastomer actuators for soft printable hexapod robot[J]. Sensors and Actuators, A:Physical, 2017, 267:505-516.
[89] Xu L, Chen H Q, Zou J, et al. Bio-inspired annelid robot:A dielectric elastomer actuated soft robot[J]. Bioinspiration and Biomimetics, 2017, 12(2):No.025003.
[90] Kovacs G, Lochmatter P, Wissler M. An arm wrestling robot driven by dielectric elastomer actuators[J]. Smart Materials and Structures, 2007, 16(2):306-317.
[91] Guo S X, Ge Y M, Li L F, et al. Underwater swimming microrobot using IPMC actuator[C]//IEEE International Conference on Mechatronics and Automation. Piscataway, USA:IEEE, 2006:249-254.
[92] Guo S X, Shi L W, Asaka K. IPMC actuator-based an underwater microrobot with 8 legs[C]//International Conference on Mechatronics and Automation. Piscataway, USA:IEEE, 2008:551-556.
[93] Christianson C, Goldberg N N, Deheyn D D, et al. Translucentsoft robots driven by frameless fluid electrode dielectricelastomer actuators[J]. Science Robotics, 2018, 3(17):DOI:10.1126/scirobotics. aat1893.
[94] Li T F, Li G R, Liang Y M, et al. Fast-moving soft electronic fish[J]. Science Advances, 2017, 3(4):No. e1602045.
[95] Yuk H, Lin S, Ma C, et al. Hydraulic hydrogel actuators and robots optically and sonically camouflaged in water[J]. Nature Communications, 2017, 8:No.14230.
[96] Wang T S, Farajollahi M, Choi Y S, et al. Electroactive polymers for sensing[J]. Interface Focus, 2016, 6(4):20160026.
[97] Bar-Cohen Y, Zhang Q M. Electroactive polymer actuators and sensors[J]. MRS Bulletin, 2008, 33(3):173-181.
[98] Yates D R, Rouprêt M, Bitker M O, et al. To infinity and beyond:The robotic toy story[J]. European Urology, 2011, 60(2):263-265.
[99] McDaid A, Xie S Q, Aw K. A compliant surgical robotic instrument with integrated IPMC sensing and actuation[J]. International Journal of Smart and Nano Materials, 2012, 3(3):188-203.
[100] Aw K, Fu L X, McDaid A. An IPMC actuated robotic surgery end effector with force sensing[J]. International Journal ofSmart and Nano Materials, 2013, 4(4):246-256.
[101] Weber J, Harrison K D. Electroactive polymer activation system for a medical device:US8133199B2[P]. 2012-03-13.
[102] Bar-Cohen Y. Electroactive polymers (EAP) as actuators for aerospace engineering[M]//Encyclopedia of Aerospace Engineering. Hoboken, USA:John Wiley & Sons, 2010.
[103] Bar-Cohen Y, Leary S, Shahinpoor M, et al. Electroactive polymer (EAP) actuators for planetary applications[C]//Annual International Symposium on Smart Structures and Materials. Bellingham, USA:SPIE, 1999:No.3669-05.
[104] Krishen K. Space applications for ionic polymer-metal composite sensors, actuators, and artificial muscles[J]. Acta Astronautica, 2009, 64(11-12):1160-1166.
[105] Bar-Cohen Y. Electroactive polymers (EAP) as actuators for potential future planetary mechanisms[C]//6th NASA/DoD Conference on Evolvable Hardware. Piscataway, USA:IEEE, 2004:309-317.
[106] Wang W, Epur R, Kumta P N, et al. Vertically aligned silicon/carbon nanotube (VASCNT) arrays:Hierarchical anodes for lithium-ion battery[J]. Electrochemistry Communications, 2011, 13(5):429-432.
[107] Wang Y, Zeng H C, Lee J Y. Highly reversible lithium storage in porous SnO2 nanotubes with coaxially grown carbon nano-tube overlayers[J]. Advanced Materials, 2006, 18(5):645-649.
[108] Chiba S, Waki M, Kornbluh R, et al. Innovative power generators for energy harvesting using electroactive polymer artificial muscles[M]//Proceedings of SPIE, Vol.6927. Bellingham,USA:SPIE, 2008:No.692715.
[109] Chuc N H, Choi H R, Nam J D, et al. Development of dielectric elastomer driven micro optical zoom lens system[M]//Proceedings of SPIE, Vol.6524. Bellingham, USA:SPIE, 2007:No.65241 V.
[110] Heydt R, Kornbluh R, Eckerle J, et al. Sound radiation properties of dielectric elastomer electroactive polymer loudspeakers[M]//Proceedings of SPIE, Vol.6168. Bellingham, USA:SPIE, 2006:No.61681 M.