A Fast Calibration Algorithm for Screw Parameters of a Deformable Manipulatorby Using the Circular Motion of End-effector
XU Shan1,2, LI Gaofeng1,2, SUN Lei1,2, LIU Jingtai1,2
1. Institute of Robotics and Automatic Information System, Nankai University, Tianjin 300071, China;
2. Tianjin Key Laboratory of Intelligent Robotics, Tianjin 300071, China
许杉, 李高峰, 孙雷, 刘景泰. 基于末端圆周运动的可变形臂旋量参数快速标定算法[J]. 机器人, 2018, 40(5): 607-618.DOI: 10.13973/j.cnki.robot.170619.
XU Shan, LI Gaofeng, SUN Lei, LIU Jingtai. A Fast Calibration Algorithm for Screw Parameters of a Deformable Manipulatorby Using the Circular Motion of End-effector. ROBOT, 2018, 40(5): 607-618. DOI: 10.13973/j.cnki.robot.170619.
Abstract:A deformable manipulator whose links can be bent according to different tasks is designed for unstructured environments in home service. The deformable manipulator can obtain relatively dexterous end-effector and extended workspace with much lower cost. However, frequent changes in link shape bring difficulties to the modeling and control of the manipulator. Firstly, the kinematic parameters of the deformable manipulator change significantly and irregularly. It is hard to measure the parameters directly due to the offset between the link coordinate and the link body. Secondly, the bending operations are frequent in order to deal with various tasks. Therefore, a less time-consuming calibration method is necessary, while the traditional calibration methods pursue high accuracy instead of efficiency. Finally, the calibration process for the deformable manipulator must be easy to be applied in home environment. To tackle above problems, a fast calibration algorithm for screw parameters of a deformable manipulator is proposed by using the circular motion of end-effector. When rotating any joint separately, the locus of end-effector is a circle in a plane, called the plane-of-rotation. The joint axis is perpendicular to the plane-of-rotation and goes through the centre of the circle. By using this property, the random sample consensus (RANSAC) and least-squares algorithms are used to fit the locus of end-effector and obtain the initial values of screw parameters. Then an extended Kalman filter (EKF) method is used to optimize the screw parameters with initial values and improve the calibration accuracy. The simulation and experimental results validate the effectiveness of the proposed method.
[1] Kazakidi A, Zabulis X, Tsakiris D P. Vision-based 3D motion reconstruction of octopus arm swimming and comparison with an 8-arm underwater robot[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2015:1178-1183.
[2] Sfakiotakis M, Kazakidi A, Chatzidaki A, et al. Multi-arm robotic swimming with octopus-inspired compliant web[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2014:302-308.
[3] Cianchetti M, Follador M, Mazzolai B, et al. Design and development of a soft robotic octopus arm exploiting embodied intelligence[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2012:5271-5276.
[4] Guglielmino E, Zullo L, Cianchetti M, et al. The application of embodiment theory to the design and control of an octopus-like robotic arm[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2012:5277-5282.
[5] Falkenhahn V, Bender F A, Hildebrandt A, et al. Online TCP trajectory planning for redundant continuum manipulators using quadratic programming[C]//IEEE International Conference on Advanced Intelligent Mechatronics. Piscataway, USA:IEEE, 2016:1163-1168.
[6] Escande C, Chettibi T, Merzouki R, et al. Kinematic calibration of a multisection bionic manipulator[J]. IEEE/ASME Transactions on Mechatronics, 2015, 20(2):663-674.
[7] Falkenhahn V, Hildebrandt A, Neumann R, et al. Model-based feedforward position control of constant curvature continuumrobots using feedback linearization[C]//IEEE InternationalConference on Robotics and Automation. Piscataway, USA:IEEE, 2015:762-767.
[8] Mahl T, Hildebrandt A, Sawodny O. A variable curvature continuum kinematics for kinematic control of the bionic handling assistant[J]. IEEE Transactions on Robotics, 2014, 30(4):935-949.
[9] Gilbert H B, Rucker D C, Webster R J Ⅲ. Concentric tube robots:The state of the art and future directions[C]//16th International Symposium on Robotics Research. Berlin, Germany:Springer, 2016:253-269.
[10] Bergeles C, Gosline A H, Vasilyev N V, et al. Concentric tube robot design and optimization based on task and anatomical constraints[J]. IEEE Transactions on Robotics, 2015, 31(1):67-84.
[11] Godage I S, Remirez A A, Wirz R, et al. Robotic intracerebral hemorrhage evacuation:An in-scanner approach with concentric tube robots[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2015:1447-1452.
[12] Rucker D C, Jones B A, Webster R J Ⅲ. A geometrically exact model for externally loaded concentric-tube continuum robots[J]. IEEE Transactions on Robotics, 2010, 26(5):769-780.
[13] 倪杭,王贺升,陈卫东.基于软体机器人冗余自由度的实时避障位置控制[J].机器人,2017,39(3):265-271.Ni H, Wang H S, Chen W D. Real-time obstacle avoidance and position control for a soft robot based on its redundant freedom[J]. Robot, 2017, 39(3):265-271.
[14] 张润玺,王贺升,陈卫东.仿章鱼软体机器人形状控制[J].机器人,2016,38(6):754-759.Zhang R X, Wang H S, Chen W D. Shape control for a soft robot inspired by octopus[J]. Robot, 2016, 38(6):754-759.
[15] Yip M C, Camarillo D B. Model-less hybrid position/force control:A minimalist approach for continuum manipulators in unknown, constrained environments[J]. IEEE Robotics and Automation Letters, 2016, 1(2):844-851.
[16] Yip M C, Camarillo D B. Model-less feedback control of continuum manipulators in constrained environments[J]. IEEE Transactions on Robotics, 2014, 30(4):880-889.
[17] Nguyen T-D, Burgner-Kahrs J. A tendon-driven continuum robot with extensible sections[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2015:2130-2135.
[18] Santolaria J, Aguilar J J, Yagüe J A, et al. Kinematic parameter estimation technique for calibration and repeatability improvement of articulated arm coordinate measuring machines[J]. Precision Engineering, 2008, 32(4):251-268.
[19] Park I W, Lee B J, Cho S H, et al. Laser-based kinematic calibration of robot manipulator using differential kinematics[J]. IEEE/ASME Transactions on Mechatronics, 2012, 17(6):1059-1067.
[20] Angelidis A, Vosniakos G C. Prediction and compensation of relative position error along industrial robot end-effector paths[J]. International Journal of Precision Engineering and Manufacturing, 2014, 15(1):63-73.
[21] Majarena A C, Santolaria J, Samper D, et al. An overview of kinematic and calibration models using internal/external sensors or constraints to improve the behavior of spatial parallel mechanisms[J]. Sensors, 2010, 10(11):10256-10297.
[22] 郝洁.家庭服务机器人可变形操作臂的运动学研究[D].天津:南开大学,2015.Hao J. Research on kinematics of deformable manipulator for home service robot[D]. Tianjin:Nankai University, 2015.
[23] Lu X, Liu J, Hao J, et al. Self-calibration of deformable arm with a monocular camera[C]//IEEE International Conference on Robotics and Biomimetics, Piscataway, USA:IEEE, 2014:861-866.
[24] 卢翔.单目目标识别及位姿测量算法研究与应用[D].天津:南开大学,2015.Lu X. Research and application on object recognition and pose measurement based on monocular camera[D]. Tianjin:Nankai University, 2015.
[25] Nubiola A, Bonev I A. Absolute robot calibration with a single telescoping ballbar[J]. Precision Engineering, 2014, 38(3):472-480.
[26] Mittendorfer P, Cheng G. Open-loop self-calibration of articulated robots with artificial skins[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2012:4539-4545.
[27] Roth Z S, Mooring B W, Ravani B. An overview of robot calibration[J]. IEEE Journal of Robotics and Automation, 1987, 3(5):377-385.
[28] Lightcap C, Hamner S, Schmitz T, et al. Improved positioning accuracy of the PA10-6CE robot with geometric and flexibility calibration[J]. IEEE Transactions on Robotics, 2008, 24(2):452-456.
[29] He R B, Zhao Y J, Yang S N, et al. Kinematic-parameter identification for serial-robot calibration based on POE formula[J]. IEEE Transactions on Robotics, 2010, 26(3):411-423.
[30] Chen G L, Wang H, Lin Z Q. Determination of the identifiable parameters in robot calibration based on the POE formula[J]. IEEE Transactions on Robotics, 2014, 30(5):1066-1077.
[31] Wang H X, Shen S H, Lu X. A screw axis identification method for serial robot calibration based on the POE model[J]. Industrial Robot, 2012, 39(2):146-153.
[32] Chen I M, Yang G L, Tan C T, et al. Local POE model for robot kinematic calibration[J]. Mechanism and Machine Theory, 2001, 36(11-12):1215-1239.
[33] Okamura K, Park F C. Kinematic calibration using the product of exponentials formula[J]. Robotica, 1996, 14(4):415-421.
[34] Gupta K C. Kinematic analysis of manipulators using the zeroreference position description[J]. International Journal of Robotics Research, 1986, 5(2):5-13.
[35] Kazerounian K, Qian G Z. Kinematic calibration of robotic manipulator[J]. Journal of Mechanisms, Transmissions and Automation in Design, 1989, 111(4):482-487.
[36] 郝洁,李高峰,孙雷,等.基于视觉标志间相对位姿的可变形臂标定方法[J].自动化学报,2017,DOI:10.16383/j. aas.2017.c160693.Hao J, Li G F, Sun L, et al. Relative-pose-of-markers based calibration method for a deformable manipulator[J]. Acta Automatica Sinica, 2017, DOI:10.16383/j.aas.2017.c160693.
[37] Li G F, Sun L, Lu X, et al. A practical, fast, and low-cost kinematic calibration scheme for a deformable manipulator by using leap motion[C]//IEEE International Conference on Robotics and Biomimetics. Piscataway, USA:IEEE, 2016:719-724.
[38] Murray R M, Li Z, Sastry S S. A mathematical introduction to robotic manipulation[M]. Boca Raton, USA:CRC Press, 1994:52-54.
[39] Hartley R, Trumpf J, Dai Y, et al. Rotation averaging[J]. International Journal of Computer Vision, 2013, 103(3):267-305.