李连鹏, 解仑, 刘振宗, 郝兵, 刘大华, 胡同海. 基于人机交互的重载机械臂控制方法[J]. 机器人, 2018, 40(4): 525-533.DOI: 10.13973/j.cnki.robot.180138.
LI Lianpeng, XIE Lun, LIU Zhenzong, HAO Bing, LIU Dahua, HU Tonghai. A Control Method for Heavy Load Manipulator Based on Man-Machine Interaction. ROBOT, 2018, 40(4): 525-533. DOI: 10.13973/j.cnki.robot.180138.
Abstract:For the lack of man-machine interaction and rigid-flexible coupling caused by heavy load in the current heavy load manipulator control system, a force/position closed-loop control algorithm for man-machine interaction based on dynamic model is proposed, and a control system of 7 DOF (degree of freedom) heavy load manipulator is designed according to the algorithm. Firstly, the working characteristics and problems of the existing heavy load manipulators at home and abroad are analyzed. And a man-machine interaction mode based on force/visual feedback is proposed to enhance the interaction performance of the system. In order to restrain the control problem caused by rigid-flexible coupling, a rigid-flexible coupling dynamic model of the heavy load manipulator is established, and a force/position closed-loop control algorithm for heavy load manipulator based on man-machine interaction is proposed. Finally, a control system of heavy load manipulator is set up, which consists of man-machine interaction subsystem, environment perception subsystem, driving subsystem, information processing subsystem and communication subsystem. On this basis, the operation test of the heavy load manipulator control system is carried out. The test results show that the control system can complete the function of man-machine interaction. Compared with the traditional working method of heavy load manipulator, the proposed system can effectively improve working efficiency by 70%, and ensure the safety of operating personnel. It is proved that the proposed control system is user-friendly, feasible and practical.
[1] Chacko V, Khan Z. Dynamic simulation of a mobile manipulator with joint friction[J]. Tribology in Industry, 2017, 39(2):152-167.
[2] Li W Z, Xie L, Deng Z L, et al. False sequential logic attack on SCADA system and its physical impact analysis[J]. Computers & Security, 2016, 58:149-159.
[3] 游玮,孔民秀.重载工业机器人控制关键技术综述[J].机器人技术与应用,2012(5):13-19.You W, Kong M X. Review on key technologies of heavy duty industrial robots control[J]. Robot Technique and Application, 2012(5):13-19.
[4] Xiao Y F, Sun J, Chen T, et al. Analysis and optimization for the counter-balancing method of heavy-load palletizing manipulators[C]//International Conference on Advanced Mechatronic Systems. Piscataway, USA:IEEE, 2013:716-719.
[5] Chuy O Y Jr, Collins E G, Sharma A, et al. Using dynamics to consider torque constraints in manipulator planning with heavy loads[J]. Journal of Dynamic Systems, Measurement, and Control, 2017, 139(5):No.051001.
[6] He W, Dong Y T, Sun C Y. Adaptive neural impedance control of a robotic manipulator with input saturation[J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2016, 46(3):334-344.
[7] Ameri A, Scheme E J, Kamavuako E N, et al. Real-time, simultaneous myoelectric control using force and position-based training paradigms[J]. IEEE Transactions on Biomedical Engineering, 2014, 61(2):279-287.
[8] Wang R J, Chen M W, Liu Y K. Design of adaptive control and fuzzy neural network control for single-stage boost inverter[J]. IEEE Transactions on Industrial Electronics, 2015, 62(9):5434-5445.
[9] 古青波,李昂,赵会光.空间双柔性机械臂刚-柔耦合建模及定标误差分析[J].中国空间科学技术,2017,37(1):33-40.Gu Q B, Li A, Zhao H G. Rigid-flexible coupling modeling and calibration error analysis of the space double flexible manipulators[J]. Chinese Space Science and Technology, 2017, 37(1):33-40.
[10] 王晓明,徐振邦,王兵,等.基础激励下6-UHP并联平台的动力学建模与仿真[J].机器人,2016,38(6):687-695.Wang X M, Xu Z B, Wang B, et al. Dynamic modeling and simulation of a 6-UHP parallel platform under base excitation[J]. Robot, 2016, 38(6):687-695.
[11] Liang D, Song Y M, Sun T, et al. Rigid-flexible coupling dynamic modeling and investigation of a redundantly actuated parallel manipulator with multiple actuation modes[J]. Journal of Sound and Vibration, 2017, 403:129-151.
[12] 陈明金,李树荣,曹乾磊.时滞柔性关节机械臂自适应位置/力控制[J].控制理论与应用,2015,32(2):217-223.Chen M J, Li S R, Cao Q L. Adaptive motion/force control for rigid-link flexible-joint manipulators with time delay[J]. Control Theory and Applications, 2015, 32(2):217-223.
[13] 刘维惠,陈殿生,张立志.人机协作下的机械臂轨迹生成与修正方法[J].机器人,2016,38(4):504-512.Liu W H, Chen D S, Zhang L Z. Trajectory generation and adjustment method for robot manipulators in human-robot collaboration[J]. Robot, 2016, 38(4):504-512.
[14] 杜志江,王伟,闫志远,等.基于模糊强化学习的微创外科手术机械臂人机交互方法[J].机器人,2017,39(3):363-370.Du Z J, Wang W, Yan Z Y, et al. A physical human-robot interaction algorithm based on fuzzy reinforcement learning for minimally invasive surgery manipulator[J]. Robot, 2017, 39(3):363-370.
[15] 彭亮,侯增广,王卫群.康复机器人的同步主动交互控制与实现[J].自动化学报,2015,41(11):1837-1846.Peng L, Hou Z G, Wang W Q. Synchronous active interaction control and its implementation for a rehabilitation robot[J]. Acta Automatica Sinica, 2015, 41(11):1837-1846.
[16] Korayem M H, Nekoo S R. Finite-time state-dependent Riccati equation for time-varying nonaffine systems:Rigid and flexible joint manipulator control[J]. ISA Transactions, 2015, 54:125-144.
[17] de Luca A, Book W J. Robots with flexible elements[M]//Springer Handbook of Robotics. Cham, Switzerland:Springer, 2016:243-282.
[18] Nazemizadeh M, Nohooji H R. An analysis of the finite elementmethod applied on dynamic motion and maximum payload planning of flexible manipulators[J]. Transactions of FAMENA, 2016, 39(4):15-22.
[19] Shankar K A, Pandey M. Nonlinear dynamic analysis of cantilever beam using POD based reduced order model[J]. Applied Mechanics and Materials, 2015, 786:398-403.
[20] Vakil M, Fotouhi R, Nikiforuk P N. A new method for dynamic modeling of flexible-link flexible-joint manipulators[J]. Journal of Vibration and Acoustics, 2012, 134(1):No.014503.
[21] Wang F Y, Gao Y Q. On frequency sensitivity and mode orthogonality of flexible robotic manipulators[J]. IEEE/CAA Journal of Automatica Sinica, 2016, 3(4):394-397.
[22] Yang H, Lee D. Dynamics and control of quadrotor with roboticmanipulator[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2014:5544-5549.
[23] 崔文,李成刚,林家庆,等.柔性关节机器人的凯恩动力学建模与仿真分析[J].机械设计与制造工程,2015,44(12):5-9.Cui W, Li C G, Lin J Q, et al. Kane dynamic modeling and simulation analysis for the flexible-joint robot[J]. Machine Design and Manufacturing Engineering, 2015, 44(12):5-9.
[24] 王大超,刘虹.基于MATLAB与ADAMS的机械臂仿真分析[J].机械工程与自动化,2017(6):59-60,62.Wang D C, Liu H. Manipulator simulation analysis based on MATLAB and ADAMS[J]. Mechanical Engineering and Automation, 2017(6):59-60,62.
[25] Jamwal P K, Hussain S, Ghayesh M H, et al. Impedance control of an intrinsically compliant parallel ankle rehabilitation robot[J]. IEEE Transactions on Industrial Electronics, 2016, 63(6):3638-3647.
[26] Lo Bello L, Bini E, Patti G. Priority-driven swapping-based scheduling of aperiodic real-time messages over EtherCAT networks[J]. IEEE Transactions on Industrial Informatics, 2015, 11(3):741-751.
[27] 马妍,宋爱国.基于STM32的力反馈型康复机器人控制系统设计[J].测控技术,2014,33(1):74-78.Ma Y, Song A G. Control system design for rehabilitation robot with force feedback based on STM32[J]. Measurement and Control Technology, 2014, 33(1):74-78.