The Control Strategy of Flexible Cable Driven Force Interactive Robot
SONG Da1, ZHANG Lixun1, WANG Bingjun2, GAO Yuan1, XUE Feng1, LI Lailu1
1. College of Mechanical and Electrical Engineering, Harbin Engineering University, Harbin 150001, China;
2. China Shipbuilding Industry Systems Engineering Research Institute, Beijing 100036, China
宋达, 张立勋, 王炳军, 高源, 薛峰, 李来禄. 柔索牵引式力觉交互机器人控制策略[J]. 机器人, 2018, 40(4): 440-447.DOI: 10.13973/j.cnki.robot.180090.
SONG Da, ZHANG Lixun, WANG Bingjun, GAO Yuan, XUE Feng, LI Lailu. The Control Strategy of Flexible Cable Driven Force Interactive Robot. ROBOT, 2018, 40(4): 440-447. DOI: 10.13973/j.cnki.robot.180090.
Abstract:In order to allow astronauts to perform the virtual operation training by simulating space environment on the ground instead of in real space environment, a flexible cable driven force interactive robot combined with virtual reality (VR) technology is designed. Firstly, the configuration of the robot is designed according to the motion characteristics of the object in microgravity environment. The dynamic model of mobile platform, driving unit and human pushing process is established and the kinematics analysis is carried out. Then, a compound control strategy is proposed for the redundant drive and force control task of the system. That is, the length change of the flexible cable is the inner loop of the velocity control, and the outer loop control of force is the hybrid force/velocity control. Finally, the single flexible cable loading and man-machine system force interactive simulation analysis are carried out, respectively. The analysis results show that the constant force following error of the flexible cable driving unit can be reduced by 10% with the proposed control strategy, and the change of cosine force can be followed steadily, which verify its effectiveness for suppressing surplus force.
[1] 林小. NASA空间站模拟训练舱[J].航天员,2010(2):59-63.Lin X. NASA space station simulation training module[J]. Astronaut, 2010(2):59-63.
[2] 徐文福,梁斌,李成,等.空间机器人微重力模拟实验系统研究综述[J].机器人,2009,31(1):88-96.Xu W F, Liang B, Li C, et al. A review on simulated micro-gravity experiment systems of space robot[J]. Robot, 2009, 31(1):88-96.
[3] 曾磊,孙鹏飞,陈明,等.空间机械臂水下试验及其关键技术综述[J]. 载人航天,2016,22(1):45-54.Zeng L, Sun P F, Chen M, et al. Review of underwater test and key technologies of space manipulator[J]. Manned Spaceflight, 2016, 22(1):45-54.
[4] Schwartz J L, Peck M A, Hall C D. Historical review of spacecraft simulators[J]. Advances in the Astronautical Sciences, 2003, 114:405-423.
[5] 李煜琦,邵珠峰,田斯慧,等.基于吊丝配重的空间机械臂零重力模拟装置卸载率分析及评价[J]. 机器人,2016,38(3):293-300.Li Y Q, Shao Z F, Tian S H, et al. Analysis and evaluation on unloading ratio of zero-g simulation device of space manipulator based on suspension system[J]. Robot, 2016, 38(3):293-300.
[6] 徐效农,宋爱国,朱澄澄,等. 基于环境建模与修正的视觉/力觉辅助遥操作系统[J]. 载人航天,2016,22(1):55-61.Xu X N, Song A G, Zhu C C, et al. Visual-haptic aid teleoperation system based on environment modeling and updating[J]. Manned Spaceflight, 2016, 22(1):55-61.
[7] 陈学文,晁建刚,安明,等. 基于体态识别的航天员虚拟训练仿真技术研究[J]. 载人航天,2015,21(3):217-223.Chen X W, Chao J G, An M, et al. Research on simulation technology of astronaut virtual training based on posture recognition[J]. Manned Spaceflight, 2015, 21(3):217-223.
[8] 宋爱国. 力觉临场感的理论与实验研究[D].南京:东南大学,1996.Song A G. Theoretical and experimental research on force telepresence[D]. Nangjing:Southeast University, 1996.
[9] Bo O, Shang W. Rapid optimization of tension distribution for cable-driven parallel manipulators with redundant cables[J]. Chinese Journal of Mechanical Engineering, 2016, 29(2):1-8.
[10] 张立勋,邹宇鹏,隋立明,等. 宇航员康复训练机器人自抗扰力控制[J]. 机器人,2012,34(2):217-222. Zhang L X, Zou Y P, Sui L M, et al. Auto disturbance resistance control of the astronaut rehabilitation training robot[J]. Robot, 2012, 34(2):217-222.
[11] Gouttefarde M, Collard J F, Riehl N, et al. Geometry selection of a redundantly actuated cable-suspended parallel robot[J]. IEEE Transactions on Robotics, 2017, 31(2):501-510.
[12] 曹凌,唐晓强,王伟方. 基于定矢量力输出的八索并联机构索力优化及实验研究[J]. 机器人,2015,37(6):641-647.Cao L, Tang X Q, Wang W F. Tension optimization and experimental research of parallel mechanism driven by 8 cables for constant vector force output[J]. Robot, 2015, 37(6):641-647.
[13] Diao X M, Ma O. Force-closure analysis of 6-DOF cable manipulators with seven or more cables[J]. Robotica, 2009, 27(2):209-215.
[14] 苏宇,仇原鹰,韦慧玲.考虑绳索质量和惯性力影响的绳牵引并联机器人动力学建模和张力优化求解[J]. 工程力学,2016,33(11):231-239.Su Y, Qiu Y Y, Wei H L. Dynamic modeling and tension optimal distribution of cable-driven parallel robots considering cable mass and inertia force effects[J]. Engineering Mechanics, 2016, 33(11):231-239.
[15] Lamaury J, Gouttefarde M. Control of a large redundantly actuated cable-suspended parallel robot[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2013:4659-4664.
[16] 张立勋,李来禄,姜锡泽,等. 柔索驱动的宇航员深蹲训练机器人力控与实验研究[J]. 机器人,2017,39(5):733-741.Zhang L X, Li L L, Jiang X Z, et al. Force control and experimental study of a cable-driven robot for astronaut deep squat training[J]. Robot, 2017, 39(5):733-741.
[17] 邹宇鹏. 多模式柔索驱动航天员训练机器人控制研究[D].哈尔滨:哈尔滨工程大学, 2014.Zou Y P. Research on control of multimodal cable driven astronaut training robot[D]. Harbin:Harbin Engineering University, 2014.