The Theory of Perpendicular Curve in Rotation Group Aiming at Incomplete Orientation Constraint Problems
LI Gaofeng1,2, XU Shan1,2, SUN Lei1,2, LIU Jingtai1,2
1. Institute of Robotics and Automatic Information System, Nankai University, Tianjin 300350, China;
2. Tianjin Key Laboratory of Intelligent Robotics, Tianjin 300350, China
李高峰, 许杉, 孙雷, 刘景泰. 面向非完全姿态约束问题的旋转矩阵群中的垂线理论[J]. 机器人, 2018, 40(2): 195-205.DOI: 10.13973/j.cnki.robot.170323.
LI Gaofeng, XU Shan, SUN Lei, LIU Jingtai. The Theory of Perpendicular Curve in Rotation Group Aiming at Incomplete Orientation Constraint Problems. ROBOT, 2018, 40(2): 195-205. DOI: 10.13973/j.cnki.robot.170323.
Abstract:In many robot applications, the complete orientation constraint in 3D Euclidean space is not necessary to fulfill given tasks. In these tasks, only one direction of the target orientation is constrained. These problems are called incomplete orientation constraint problems. Aiming at such problems, the definition and the analytical expressions are given for the foot of perpendicular and the perpendicular curve of geodesic in rotation group. Based on the perpendicular curve theory, a point-to-point trajectory generating algorithm by following the perpendicular curve is proposed. Finally, trajectory planning of manipulators is solved by simulation experiments. And the PUMA 560 with 6 DOFs (degrees of freedom) is taken as the platform, of which the 6-th and the 4-th joints are fixed successively to get 5-DOF and 4-DOF manipulators. The proposed algorithm can not only be applied to 6-DOF manipulators with function redundancy, but also the 5-DOF or 4-DOF manipulators without function redundancy. The experimental results demonstrate that the proposed method is highly universal in solving incomplete orientation constraint problems. Moreover, the algorithm can avoid the representational singularity problem in parametrization methods.
[1] Ficuciello F, Villani L, Siciliano B. Variable impedance control of redundant manipulators for intuitive human-robot physical interaction[J]. IEEE Transactions on Robotics, 2015, 31(4): 850-863.
[2] Schuetz C, Baur J, Pfaff J, et al. Evaluation of a direct optimization method for trajectory planning of a 9-DOF redundantfruit-picking manipulator[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA: IEEE, 2015: 2660-2666.
[3] 徐朋,赵东标,程锦翔,等.冗余机器人逆运动学解流形的多目标优化 [J].机器人,2016,38(6):704-710.Xu P, Zhao D B, Cheng J X, et al. Multi-objective optimization for inverse kinematics solution manifolds of redundant robots[J]. Robot, 2016, 38(6): 704-710.
[4] 申浩宇,吴洪涛,陈柏,等.基于主从任务转化的冗余度机器人避障算法 [J].机器人,2014,36(4):425-429.Shen H Y, Wu H T, Chen B, et al. Obstacle avoidance algorithm for redundant robots based on transition between the primary and secondary tasks[J]. Robot, 2014, 36(4): 425-429.
[5] 阳方平,李洪谊,王越超,等.一种求解冗余机械臂逆运动学的优化方法 [J].机器人,2012,34(1):17-21,31.Yang F P, Li H Y, Wang Y C, et al. An optimization method for solving the inverse kinematics of redundant manipulator[J]. Robot, 2012, 34(1): 17-21,31.
[6] Beeson P, Ames B. TRAC-IK: An open-source library for improved solving of generic inverse kinematics[C]//IEEE-RAS International Conference on Humanoid Robots. Piscataway, USA: IEEE, 2015: 928-935.
[7] Chan T F, Dubey R V. A weighted least-norm solution based scheme for avoiding joint limits for redundant joint manipulators [J]. IEEE Transactions on Robotics and Automation, 1995, 11(2): 286-292.
[8] Starke S, Hendrich N, Magg S, et al. An efficient hybridization of genetic algorithms and particle swarm optimization for inverse kinematics[C]//IEEE International Conference on Robotics and Biomimetics. Piscataway, USA: IEEE, 2016: 1782-1789.
[9] 陈鹏,刘璐,余飞,等.一种仿人机械臂的运动学逆解的几何求解方法 [J].机器人,2012,34(2):212-216.Chen P, Liu L, Yu F, et al. A geometrical method for inverse kinematics of a kind of humanoid manipulator[J]. Robot, 2012, 34(2): 212-216.
[10] Shimizu M, Kakuya H, Yoon W K, et al. Analytical inverse kinematic computation for 7-DOF redundant manipulators with joint limits and its application to redundancy resolution[J]. IEEE Transactions on Robotics, 2008, 24(5): 1131-1142.
[11] Wang Y S, Sun L, Yan W B, et al. An analytic and optimal inverse kinematic solution for a 7-DOF space manipulator[J]. Robot, 2014, 36(5): 592-599.
[12] Sciavicco L, Siciliano B. Modelling and control of robot manipulators[M]. Berlin, Gernamy: Springer-Verlag, 2000.
[13] Huo L G, Baron L. The joint-limits and singularity avoidance in robotic welding[J]. Industrial Robot, 2008, 35(5): 456-464.
[14] 王英石,孙雷,刘景泰.基于空间几何方法的乒乓球机器人最优姿态求取 [J].机器人,2014,36(2):203-208.Wang Y S, Sun L, Liu J T. Optimal pose solution based on space geometry method for pingpong robot[J]. Robot, 2014, 36(2): 203-208.
[15] MurrayR M, Li Z X, Sastry S S. A mathematical introduction to robotic manipulation[M]. New York, USA: CRC Press, 1994.
[16] 戴建生.旋量代数与李群、李代数 [M].北京:高等教育出版社,2014:119-149.Dai J S. Screw algebra and Lie groups and Lie algebras[M]. Beijing: Higher Education Press, 2014: 119-149.
[17] 魏武,叶春台,袁银龙.基于群论的六足机器人运动空间研究 [J].机器人,2016,38(5):522-530.Wei W, Ye C T, Yuan Y L. Workspace analysis of a six-legged robot based on group theory[J]. Robot, 2016, 38(5): 522-530.
[18] Yu Y, Yang S, Wang M, et al. High performance full attitude control of a quadrotor on SO(3)[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA: IEEE, 2015: 1698-1703.
[19] Hartley R, Trumpf J, Dai Y, et al. Rotation averaging[J]. International Journal of Computer Vision, 2013, 103(3): 267-305.