李敏, 徐光华, 谢俊, 韩丞丞, 张鑫, 李黎黎, 张四聪. 脑卒中意念控制的主被动运动康复技术[J]. 机器人, 2017, 39(5): 759-768.DOI: 10.13973/j.cnki.robot.2017.0759.
LI Min, XU Guanghua, XIE Jun, HAN Chengcheng, ZHANG Xin, LI Lili, ZHANG Sicong. Motor Rehabilitation with Control based on Human Intent for Stroke Survivors. ROBOT, 2017, 39(5): 759-768. DOI: 10.13973/j.cnki.robot.2017.0759.
Abstract:The development of motor rehabilitation methods for stroke survivors is reviewed with a focus on human motor intent controlled rehabilitation. Starting with neurodevelopmental principles of motor rehabilitation that provides neuroscientific basis for the rehabilitation with the control based on human intent, methods of human motor intent detection are reviewed, and feedback approaches are followed. Some challenges for the future development of motor rehabilitation with the control based on human intent for stroke survivors are addressed.
[1] Ang K K, Guan C. Brain-computer interface in stroke rehabilitation[J]. Journal of Computing Science and Engineering, 2013, 7(2):139-146.
[2] World Health Organization. WHO library cataloguing-in-publication data:World report on disability[EB/OL].[2017-01-01]. http://www.who.int/disabilities/world_report/2011/en/.
[3] Wade E, Winstein C J. Virtual reality and robotics for stroke rehabilitation:Where do we go from here?[J]. Topics in Stroke Rehabilitation, 2012, 18(6):685-700.
[4] Johansson B B. Current trends in stroke rehabilitation:A review with focus on brain plasticity[J]. Acta Neurologica Scandinavica, 2011, 123(3):147-159.
[5] Pascual-Leone A, Freitas C, Oberman L, et al. Characterizing brain cortical plasticity and network dynamics across the age-span in health and disease with TMS-EEG and TMS-fMRI[J]. Brain Topography, 2011, 24(3/4):302-315.
[6] Singh P, Heera P K, Kaur G. Expression of neuronal plasticity markers in hypoglycemia induced brain injury[J]. Molecular and Cellular Biochemistry, 2003, 247(1/2):69-74.
[7] Dietz V, Fouad K. Restoration of sensorimotor functions after spinal cord injury[J]. Brain, 2014, 137(3):654-667.
[8] Moxon K A, Oliviero A, Aguilar J, et al. Cortical reorganization after spinal cord injury:Always for good?[J]. Neuroscience, 2014, 283:78-94.
[9] Schmidt R A, Lee T D. Motor control and learning:A behavioral emphasis[M]. 5th ed. Champaign, USA:Human Kinetics, 2011.
[10] Cramer S C. Repairing the human brain after stroke:I. Mechanisms of spontaneous recovery[J]. Annals of Neurology, 2008, 63(3):272-287.
[11] Pekna M, Pekny M, Nilsson M. Modulation of neural plasticity as a basis for stroke rehabilitation[J]. Stroke, 2012, 43(10):2819-2828.
[12] Takeuchi N, Izumi S I. Rehabilitation with poststroke motor recovery:A review with a focus on neural plasticity[J]. Stroke Research and Treatment, 2013:doi:http://dx.doi.org/10.1155/2013/128641.
[13] Rossiter H E, Eaves C, Davis E, et al. Changes in the location of cortico-muscular coherence following stroke[J]. NeuroImage:Clinical, 2013, 2(1):50-55.
[14] Teasell R, Hussein N. General concepts:Therapies for rehabilitation and recovery[M]//Ischemic Stroke Therapeutics. Berlin, Germany:Springer-Verlag, 2016:195-201.
[15] Heo P, Gu G M, Lee S J, et al. Current hand exoskeleton technologies for rehabilitation and assistive engineering[J]. International Journal of Precision Engineering and Manufacturing, 2012, 13(5):807-824.
[16] Warraich Z, Kleim J A. Neural plasticity:The biological substrate for neurorehabilitation[J]. PM&R, 2010, 2(12):S208-S219.
[17] Liepert J, Bauder H, Wolfgang H R, et al. Treatment-induced cortical reorganization after stroke in humans[J]. Stroke, 2000, 31(6):1210-1216.
[18] Piggott L, Wagner S Z M. Haptic neurorehabilitation and virtual reality for upper limb paralysis:A review[J]. Critical Reviews in Biomedical Engineering, 2016, 44(1/2):1-32.
[19] Saposnik G. Virtual reality in stroke rehabilitation[M]//Is-chemic Stroke Therapeutics. Berlin, Germany:Springer-Verlag, 2016:225-233.
[20] Ethier C, Gallego J A, Miller L. Brain-controlled neuromuscular stimulation to drive neural plasticity and functional recovery[J]. Current Opinion in Neurobiology, 2015, 33:95-102.
[21] Wolters A, Sandbrink F, Schlottmann A, et al. A temporally asymmetric Hebbian rule governing plasticity in the human motor cortex[J]. Journal of Neurophysiology, 2003, 89(5):2339-2345.
[22] Grosse-Wentrup M, Mattia D, Oweiss K. Using brain-computer interfaces to induce neural plasticity and restore function[J]. Journal of Neural Engineering, 2011, 8(2):No.25004.
[23] van Dokkum L E H, Ward T, Laffont I. Brain computer interfaces for neurorehabilitation-Its current status as a rehabilitation strategy post-stroke[J]. Annals of Physical and Rehabilitation Medicine, 2015, 58(1):3-8.
[24] Silvoni S, Ramos-Murguialday A, Cavinato M, et al. Brain-computer interface in stroke:A review of progress[J]. Clinical EEG and Neuroscience, 2011, 42(4):245-252.
[25] Rea M, Rana M, Lugato N, et al. Lower limb movement preparation in chronic stroke:A pilot study toward an fNIRS-BCI for gait rehabilitation[J]. Neurorehabilitation and Neural Repair, 2014, 28(6):564-575.
[26] Hara Y, Obayashi S, Tsujiuchi K, et al. The effects of electromyography-controlled functional electrical stimulation on upper extremity function and cortical perfusion in stroke patients[J]. Clinical Neurophysiology, 2013, 124(10):2008-2015.
[27] Nicolas-Alonso L F, Gomez-Gil J. Brain computer interfaces, a review[J]. Sensors, 2012, 12(2):1211-1279.
[28] Li L L, Wang J, Xu G H, et al. The study of object-oriented motor imagery based on EEG suppression[J]. PLoS ONE, 2015, 10(12):No.e0144256.
[29] Li M F, Liu Y, Wu Y, et al. Neurophysiological substrates of stroke patients with motor imagery-based brain-computer interface training[J]. The International Journal of Neuroscience, 2014, 124(6):403-415.
[30] Cameirão M S, Bermúdez i Badia S, Duarte Oller E, et al. The rehabilitation gaming system:A review[J]. Studies in Health Technology and Informatics, 2009, 145:65-83.
[31] Yi W B, Qiu S, Wang K, et al. EEG oscillatory patterns and classification of sequential compound limb motor imagery[J]. Journal of NeuroEngineering and Rehabilitation, 2016, 13:doi:10.1186/s12984-016-0119-8.
[32] Liang S, Choi K S, Qin J, et al. Improving the discrimination of hand motor imagery via virtual reality based visual guidance[J]. Computer Methods and Programs in Biomedicine, 2016, 132:63-74.
[33] Ahmadian P, Cagnoni S, Ascari L. How capable is non-invasive EEG data of predicting the next movement? A mini review[J]. Frontiers in Human Neuroscience, 2013, 7(April):doi:10.3389/fnhum.2013.00124.
[34] Niazi I K, Jiang N, Jochumsen M, et al. Detection of movement-related cortical potentials based on subject-independent training[J]. Medical and Biological Engineering and Computing, 2013, 51(5):507-512.
[35] Bhagat N A, Venkatakrishnan A, Abibullaev B, et al. Design and optimization of an EEG-based brain machine interface (BMI) to an upper-limb exoskeleton for stroke survivors[J]. Frontiers in Neuroscience, 2016, 10:doi:10.3389/fnins.2016.00122.
[36] Hong B, Guo F, Liu T, et al. N200-speller using motion-onset visual response[J]. Clinical Neurophysiology, 2009, 120(9):1658-1666.
[37] Guo F, Hong B, Gao X R, et al. A brain-computer interface using motion-onset visual evoked potential[J]. Journal of Neural Engineering, 2008, 5(4):477-485.
[38] Jin J, Allison B Z, Wang X Y, et al. A combined brain-computer interface based on P300 potentials and motion-onset visual evoked potentials[J]. Journal of Neuroscience Methods, 2012, 205(2):265-276.
[39] Heinrich S P, Bach M. Adaptation characteristics of steady-state motion visual evoked potentials[J]. Clinical Neurophysiology, 2003, 114(7):1359-1366.
[40] Xie J, Xu G H, Wang J, et al. Steady-state motion visual evoked potentials produced by oscillating Newton's rings:Implications for brain-computer interfaces[J]. PLoS ONE, 2012, 7(6):No.e39707.
[41] Xie J, Xu G H, Wang J, et al. Effects of mental load and fatigue on steady-state evoked potential based brain computer interface tasks:A comparison of periodic flickering and motion-reversal based visual attention[J]. PLoS ONE, 2016, 11(9):No.e0163426.
[42] Xie J, Xu G H, Wang J, et al. Addition of visual noise boosts evoked potential-based brain-computer interface[J]. Scientific Reports, 2014, 4:No.4953.
[43] Yan W Q, Xu G H, Li M, et al. Steady-state motion visual evoked potential (SSMVEP) based on equal luminance colored enhancement[J]. PLoS One, 2017, 12(1):No.e0169642.
[44] Leamy D J, Kocijan J, Domijan K, et al. An exploration of EEG features during recovery following stroke-Implications for BCI-mediated neurorehabilitation therapy[J]. Journal of Neuroengineering and Rehabilitation, 2014, 11(1):1-16.
[45] McKhann G M Ⅱ. Cortical control of a prosthetic arm for self-feeding[J]. Neurosurgery, 2008, 63(2):N8-N9.
[46] Zhang X, Zhou P. High-density myoelectric pattern recognition toward improved stroke rehabilitation[J]. IEEE Transactions on Biomedical Engineering, 2012, 59(6):1649-1657.
[47] Li Q L, Wang D Y, Du Z J, et al. A novel rehabilitation system for upper limbs[C]//Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Piscataway, USA:IEEE, 2005:6840-6843.
[48] Li Q L, Wang D Y, Du Z J, et al. sEMG based control for 5 DOF upper limb rehabilitation robot system[C]//IEEE International Conference on Robotics and Biomimetics. Piscataway, USA:IEEE, 2006:1305-1310.
[49] Geng Y J, Zhang X F, Zhang Y T, et al. A novel channel selection method for multiple motion classification using high-density electromyography[J]. BioMedical Engineering Online, 2014, 13:No.102.
[50] Han J D, Ding Q C, Xiong A B, et al. A state-space EMG model for the estimation of continuous joint movements[J]. IEEE Transactions on Industrial Electronics, 2015, 62(7):4267-4275.
[51] Ding Q C, Han J D, Zhao X G. Continuous estimation of human multi-joint angles from sEMG using a state-space model[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2016:doi:10.1109/TNSRE.2016.2639527.
[52] Krebs H I, Palazzolo J J, Dipietro L, et al. Rehabilitation robotics:Performance-based progressive robot-assisted therapy[J]. Autonomous Robots, 2003, 15(1):7-20.
[53] Xu R, Jiang N, Mrachacz-Kersting N, et al. A closed-loop brain-computer interface triggering an active ankle-foot orthosis for inducing cortical neural plasticity[J]. IEEE Transactions on Biomedical Engineering, 2014, 61(7):2092-2101.
[54] Bhagat N A, French J, Venkatakrishnan A, et al. Detecting movement intent from scalp EEG in a novel upper limb robotic rehabilitation system for stroke[C]//Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Piscataway, USA:IEEE, 2014:4127-4130.
[55] Stein R B, Everaert D G, Roy F D, et al. Facilitation of corticospinal connections in able-bodied people and people with central nervous system disorders using eight interventions[J]. Journal of Clinical Neurophysiology, 2013, 30(1):66-78.
[56] Moe J H, Post H. Functional electrical stimulation for ambulation in hemiplegia[J]. The Lancet, 1962, 82(7):285-288.
[57] Takahashi M, Takeda K, Otaka Y, et al. Event related desynchronization-modulated functional electrical stimulation system for stroke rehabilitation:A feasibility study[J]. Journal of NeuroEngineering and Rehabilitation, 2012, 9(1):No.56.
[58] Ono T, Mukaino M, Ushiba J. Functional recovery in upper limb function in stroke survivors by using brain-computer interface. A single case A-B-A-B design[C]//Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Piscataway, USA:IEEE, 2013:265-268.
[59] Cincotti F, Pichiorri F, Arico P, et al. EEG-based brain-computer interface to support post-stroke motor rehabilitation of the upper limb[C]//Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Piscataway, USA:IEEE, 2012:4112-4115.
[60] Hong I K, Choi J B, Lee J H. Cortical changes after mental imagery training combined with electromyography-triggered electrical stimulation in patients with chronic stroke[J]. Stroke, 2012, 43(9):2506-2509.
[61] Jiang S L, Chen L, Wang Z P, et al. Application of BCI-FES system on stroke rehabilitation[C]//7th Annual International IEEE EMBS Conference on Neural Engineering. Piscataway, USA:IEEE, 2015:1112-1115.
[62] Zhao X G, Chu Y Q, Han J D, et al. SSVEP-based brain-computer interface controlled functional electrical stimulation system for upper extremity rehabilitation[J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2016, 46(7):947-956.
[63] Patel J, Fluet G, Merians A, et al. Virtual reality-augmented rehabilitation in the acute phase post-stroke for individuals with flaccid upper extremities:A feasibility study[C]//International Conference on Virtual Rehabilitation Proceedings. Piscataway, USA:IEEE, 2015:215-223.
[64] Ulloa E R, Pineda J A. Recognition of point-light biological motion:Mu rhythms and mirror neuron activity[J]. Behavioural Brain Research, 2007, 183(2):188-194.
[65] Saygin A P, Wilson S M, Hagler D J, et al. Point-light biological motion perception activates human premotor cortex[J]. Journal of Neuroscience, 2004, 24(27):6181-6188.
[66] Secoli R, Milot M-H, Rosati G, et al. Effect of visual distraction and auditory feedback on patient effort during robot-assisted movement training after stroke[J]. Journal of Neuroengineering and Rehabilitation, 2011, 8(1):No.21.
[67] Thaut M H, Leins A K, Rice R R, et al. Rhythmic auditory stimulation improves gait more than NDT/bobath training in near-ambulatory patients early poststroke:A single-blind, randomized trial[J]. Neurorehabilitation and Neural Repair, 2007, 21(5):455-459.
[68] Malcolm M P, Massie C, Thaut M. Rhythmic auditory-motor entrainment improves hemiparetic arm kinematics during reaching movements:A pilot study[J]. Topics in Stroke Rehabilitation, 2009, 16(1):69-79.
[69] Minogue J, Jones M G. Haptics in education:Exploring an untapped sensory modality[J]. Review of Educational Research, 2006, 76(3):317-348.
[70] Marchal-Crespo L, Reinkensmeyer D J. Review of control strategies for robotic movement training after neurologic injury[J]. Journal of Neuroengineering and Rehabilitation, 2009, 6(1):No.20.
[71] Shah N, Basteris A, Amirabdollahian F. Design parameters in multimodal games for rehabilitation[J]. Games for Health Journal, 2014, 3(1):13-20.
[72] Alamri A, Eid M, Iglesias R, et al. Haptic virtual rehabilitation exercises for poststroke diagnosis[J]. IEEE Transactions on Instrumentation and Measurement, 2008, 57(9):1876-1884.
[73] Qiu Q, Fluet G G, Saleh S, et al. Integrated versus isolated training of the hemiparetic upper extremity in haptically rendered virtual environments[C]//Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Piscataway, USA:IEEE 2010:2255-2258.
[74] Dovat L D L, Lambercy O L O, Ruffieux Y R Y, et al. A haptic knob for rehabilitation of stroke patients[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2006:977-982.
[75] Gomez-Rodriguez M, Peterst J, Hin J, et al. Closing the sensorimotor loop:Haptic feedback facilitates decoding of motor imagery[J]. Journal of Neural Engineering, 2011, 8:No.036005.
[76] Turolla A, Daud Albasini O A, Oboe R, et al. Haptic-based neurorehabilitation in poststroke patients:A feasibility prospective multicentre trial for robotics hand rehabilitation[J]. Computational and Mathematical Methods in Medicine, 2013:No.UNSP895492.
[77] Li H J, Song A G. Force assistant master-slave telerehabilitation robotic system[J]. Journal of Southeast University:English Edition, 2008, 24(1):42-45.
[78] Markow T T. Mobile music touch:Using haptic stimulation for passive rehabilitation and learning[EB/OL]. (2012-06-06)[2017-01-01]. http://hdl.handle.net/1853/43665.
[79] Sigrist R, Rauter G, Riener R, et al. Augmented visual, auditory, haptic, and multimodal feedback in motor learning:A review[J]. Psychonomic Bulletin & Review, 2013, 20(1):21-53.
[80] Merians A S, Jack D, Boian R, et al. Virtual reality-augmented rehabilitation for patients following stroke[J]. Physical Therapy, 2002, 82(9):898-915.
[81] Cho S, Ku J, Cho Y K, et al. Development of virtual reality proprioceptive rehabilitation system for stroke patients[J]. Computer Methods and Programs in Biomedicine, 2014, 113(1):258-265.
[82] Crosbie J H, Lennon S, Basford J R, et al. Virtual reality in stroke rehabilitation:Still more virtual than real[J]. Disability and Rehabilitation, 2007, 29(14):1139-1146.
[83] Henderson A, Korner-Bitensky N, Levin M. Virtual reality in stroke rehabilitation:A systematic review of its effectiveness for upper limb motor recovery[J]. National Institutes of Health, 2008, 14(2):52-61.
[84] You S H, Jang S H, Kim Y H, et al. Virtual reality-induced cortical reorganization and associated locomotor recovery in chronic stroke:An experimenter-blind randomized study[J]. Stroke, 2005, 36(6):1166-1171.
[85] Saposnik G, Teasell R, Mamdani M, et al. Effectiveness of virtual reality using Wii gaming technology in stroke rehabilitation:A pilot randomized clinical trial and proof of principle[J]. Stroke, 2010, 41(7):1477-1484.
[86] LeBlanc S, Paquin K, Carr K, et al. Non-immersive virtual reality for fine motor rehabilitation of functional activities in individuals with chronic stroke:A review[J]. Journal of Aging Science, 2013, 1(2):doi:10.4172/2329-8847.1000105.
[87] Fan S C, Su F C, Chen S S, et al. Improved intrinsic motivation and muscle activation patterns in reaching task using virtual reality training for stroke rehabilitation:A pilot randomized control trial[J]. Journal of Medical and Biological Engineering, 2014, 34(4):399-407.
[88] Pei W, Xu G H, Li M, et al. A motion rehabilitation self-training and evaluation system using Kinect[C]//International Conference on Ubiquitous Robots and Ambient Intelligence. Piscataway, USA:IEEE, 2016:353-357.
[89] Sescousse G, Redouté J, Dreher J-C. The architecture of reward value coding in the human orbitofrontal cortex[J]. The Journal of Neuroscience, 2010, 30(39):13095-13104.
[90] Kwon J S, Park M J, Yoon I J, et al. Effects of virtual reality on upper extremity function and activities of daily living performance in acute stroke:A double-blind randomized clinical trial[J]. NeuroRehabilitation, 2012, 31(4):379-385.
[91] Mirelman A, Patritti B L, Bonato P, et al. Effects of virtual reality training on gait biomechanics of individuals post-stroke[J]. Gait and Posture, 2010, 31(4):433-437.
[92] Ding Q C, Stevenson I H, Wang N, et al. Motion games improve balance control in stroke survivors:A preliminary study based on the principle of constraint-induced movement therapy[J]. Displays, 2013, 34(2):125-131.
[93] Cho S, Ku J, Cho Y K, et al. Development of virtual reality proprioceptive rehabilitation system for stroke patients[J]. Computer Methods and Programs in Biomedicine, 2014, 113(1):258-265.
[94] Biswas K, Mazumder O, Kundu A S. Multichannel fused EMG based biofeedback system with virtual reality for gait rehabilitation[C]//International Conference on Intelligent Human Computer Interaction. Piscataway, USA:IEEE, 2012:doi:10.1109/IHCI.2012.6481834.
[95] Luu T P, He Y, Brown S, et al. Gait adaptation to visual kinematic perturbations using a real-time closed-loop brain-computer interface to a virtual reality avatar[J]. Journal of Neural Engineering, 2016, 13(3):30-37.
[96] Bermúdez I Badia S, García Morgade A, et al. Using a hybrid brain computer interface and virtual reality system to monitor and promote cortical reorganization through motor activity and motor imagery training[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2013, 21(2):174-181.
[97] Takahashi C D, Der-Yeghiaian L, Le V, et al. Robot-based hand motor therapy after stroke[J]. Brain, 2008, 131(2):425-437.
[98] Wolf S L, Winstein C J, Miller J P, et al. Effect of constraint-induced movement therapy on upper extremity function 3 to 9 months after stroke-The EXCITE randomized clinical trial[J]. Journal of the American Medical Association, 2015, 296(17):2095-2104.
[99] Carmeli E, Peleg S, Bartur G, et al. HandTutor enhanced hand rehabilitation after stroke-A pilot study[J]. Physiotherapy Research International, 2011, 16(4):191-200.
[100] Ueki S, Nishimoto Y, Abe M, et al. Development of virtual reality exercise of hand motion assist robot for rehabilitation therapy by patient self-motion control[C]//Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Piscataway, USA:IEEE, 2008:4282-4285.
[101] Kutner N G, Zhang R, Butler A J, et al. Quality-of-life change associated with robotic-assisted therapy to improve hand motor function in patients with subacute stroke:A randomized clinical trial[J]. Physical Therapy, 2010, 90(4):493-504.
[102] Brauchle D, Vukeli? M, Bauer R, et al. Brain state-dependent robotic reaching movement with a multi-joint arm exoskeleton:Combining brain-machine interfacing and robotic rehabilitation[J]. Frontiers in Human Neuroscience, 2015, 9:doi:10.3389/fnhum.2015.00564.
[103] Wolbrecht E T, Chan V, Reinkensmeyer D J, et al. Optimizing compliant, model-based robotic assistance to promote neurorehabilitation[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2008, 16(3):286-297.
[104] Basteris A, Nijenhuis S M, Stienen A H A, et al. Training modalities in robot-mediated upper limb rehabilitation in stroke:A framework for classification based on a systematic review[J]. Journal of Neuroengineering and Rehabilitation, 2014, 11:doi:10.1186/1743-0003-11-111.
[105] Goodman R N, Rietschel J C, Roy A, et al. Increased reward in ankle robotics training enhances motor control and cortical efficiency in stroke[J]. Journal of Rehabilitation Research and Development, 2014, 51(2):213-228.
[106] Song R, Tong K Y, Hu X L, et al. Arm-eye coordination test to objectively quantify motor performance and muscles activation in persons after stroke undergoing robot-aided rehabilitation training:A pilot study[J]. Experimental Brain Research, 2013, 229(3):373-382.
[107] Genna C, Dosen S, Paredes L, et al. A novel robot-aided therapy for shoulder rehabilitation after stroke:Active-assisted control of the RehaArm robot using electromyographic signals[M]//Biosystems and Biorobotics, vol.7. Berlin, Germany:Springer-Verlag, 2014:383-391.
[108] Song R, Tong K Y, Hu X L, et al. Assistive control system using continuous myoelectric signal in robot-aided arm training for patients after stroke[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2008, 16(4):371-379.
[109] Khokhar Z O, Xiao Z G, Menon C, et al. Surface EMG pattern recognition for real-time control of a wrist exoskeleton[J]. BioMedical Engineering Online, 2010, 9(1):No.41.
[110] Leonardis D, Barsotti M, Loconsole C, et al. An EMG-controlled robotic hand exoskeleton for bilateral rehabilitation[J]. IEEE Transactions on Haptics, 2015, 8(2):140-151.
[111] Várkuti B, Guan C, Pan Y, et al. Resting state changes in functional connectivity correlate with movement recovery for BCI and robot-assisted upper-extremity training after stroke[J]. Neurorehabilitation and Neural Repair, 2013, 27(1):53-62.
[112] Kwak N S, Müller K R, Lee S W. A lower limb exoskeleton control system based on steady state visual evoked potentials[J]. Journal of Neural Engineering, 2015, 12(5):No.056009.
[113] Zhang X, Xu G H, Xie J, et al. An EEG-driven lower limb rehabilitation training system for active and passive co-stimulation[C]//Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Piscataway, USA:IEEE, 2015:4582-4585.
[114] Donati A, Shokur S, Morya E, et al. Long-term training with a brain-machine interface-based gait protocol induces partial neurological recovery in paraplegic patients[J]. Scientific Reports, 2016, 6:No.30383.