Abstract:In order to address the shortcomings of feature-based sparse VSLAM (visual simultaneous localization and mapping) in visual navigation because of its sparse mapping, a densifying algorithm based on Gaussian filter interpolation is proposed to simulate the planar LiDAR feedback. A densifying algorithm based on Gaussian distribution and circulated filtering is proposed. By establishing global Gaussian filter and local Gaussian distribution estimation, the planar projection of the sparse VSLAM spatial points is interpolated to generate a simulated planar LiDAR feedback. With CPU only, the proposed algorithm costs 0.0003s~0.006s for each frame, and gets a 7.956% relative error in its interpolation results. The experiment results demonstrate that the proposed interpolation method can densify the sparse projected points, the result is similar to the true LiDAR feedback, and it provides an effective real-time front-end sensor processing method for visual navigation.
[1] Scaramuzza D, Achtelik M C, Doitsidis L, et al. Vision-controlled micro flying robots:From system design to autonomous navigation and mapping in GPS-denied environments[J]. IEEE Robotics & Automation Magazine, 2014, 21(3):26-40.
[2] Hartley R, Zisserman A. Multiple view geometry in computer vision[M]. Cambridge, UK:Cambridge University Press, 2009.
[3] Durrant-Whyte H, Bailey T. Simultaneous localization and mapping:Part I[J]. IEEE Robotics & Automation Magazine, 2006, 13(2):99-108.
[4] Bailey T, Durrant-Whyte H. Simultaneous localization and mapping (SLAM):Part Ⅱ[J]. IEEE Robotics & Automation Magazine, 2006, 13(3):108-117.
[5] Yang N, Wang R, Cremers D. Feature-based or direct:An eva-luation of monocular visual odometry[EB/OL]. (2017-05-11)[2017-07-11]. https://arxiv.org/pdf/1705.04300v1.pdf.
[6] Mur-Artal R, Montiel J M M, Tardos J D. ORB-SLAM:A versatile and accurate monocular SLAM system[J]. IEEE Transactions on Robotics, 2015, 31(5):1147-1163.
[7] Mur-Artal R, Tardos J D. ORB-SLAM2:An open-sourceSLAM system for monocular, stereo and RGB-D cameras[J]. IEEE Transactions on Robotics, 2017, 33(5):1255-1262.
[8] Engel J, Koltun V, Cremers D. Direct sparse odometry[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, doi:10.1109/TPAMI.2017.2658577.
[9] Engel J, Schöps T, Cremers D. LSD-SLAM:Large-scale direct monocular SLAM[C]//13th European Conference on Computer Vision. Berlin, Germany:Springer, 2014:834-849.
[10] Cadena C, Carlone L, Carrillo H, et al. Past, present, and future of simultaneous localization and mapping:Toward the robust-perception age[J]. IEEE Transactions on Robotics, 2016, 32(6):1309-1332.
[11] Rublee E, Rabaud V, Konolige K, et al. ORB:An efficient alternative to SIFT or SURF[C]//IEEE International Conference on Computer Vision. Piscataway, USA:IEEE, 2011:2564-2571.
[12] Lowe D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2):91-110.
[13] Furgale P, Barfoot T D. Visual teach and repeat for long-range rover autonomy[J]. Journal of Field Robotics, 2010, 27(5):534-560.
[14] Clement L, Kelly J, Barfoot T D. Monocular visual teach and repeat aided by local ground planarity[C]//10th International Conference on Field and Service Robotics. Berlin, Germany:Springer, 2016:547-561.
[15] Grisetti G, Stachniss C, Burgard W. Improved techniques for grid mapping with Rao-Blackwellized particle filters[J]. IEEE Transactions on Robotics, 2007, 23(1):34-46.
[16] Saarinen J, Andreasson H, Stoyanov T, et al. Normal distributions transform Monte-Carlo localization (NDT-MCL)[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2013:382-389.
[17] Meyer J-A, Filliat D. Map-based navigation in mobile robots:Ⅱ.A review of map-learning and path-planning strategies[J]. Cognitive Systems Research, 2003, 4(4):283-317.
[18] Wolcott R W, Eustice R M. Visual localization within LiDAR maps for automated urban driving[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway,USA:IEEE, 2014:176-183.
[19] Premebida C, Ludwig O, Nunes U. LIDAR and vision-based pedestrian detection system[J]. Journal of Field Robotics, 2009, 26(9):696-711.
[20] Blu T, Thévenaz P, Unser M. Linear interpolation revitalized[J]. IEEE Transactions on Image Processing, 2004, 13(5):710-719.
[21] Pei J H, Zou M, Wang L X. A local adaptive threshold noise detection linear interpolation filter (LALIF) for stripe noise removal in infrared images[C]//IEEE International Conference on Signal Processing. Piscataway, USA:IEEE, 2016:681-686.
[22] Foote T. Laser_filters[CP/OL].[2017-03-22]. http://www.ros.org/browse/details.php?distro=kinetic&name=laser_filters.
[23] Yu G S, Sapiro G, Mallat S. Solving inverse problems with piecewise linear estimators:From Gaussian mixture models to structured sparsity[J]. IEEE Transactions on Image Processing, 2012, 21(5):2481-2499.
[24] Du S Y, Liu J, Zhang C, Zhu J, et al. Probability iterative closest point algorithm for m-D point set registration with noise[J]. Neurocomputing, 2015, 157(1):187-198.
[25] 陈炜楠,刘冠峰,李俊良,等.室内环境的元胞自动机SLAM算法[J].机器人,2016,38(2):169-177.Chen W N, Liu G F, Li J L, et al. An indoor SLAM algorithm based on cellular automata[J]. Robot, 2016, 38(2):169-177.