The Present Status of Environmental Energy Harvesting and Utilization Technologyof Marine Robots
YU Jiancheng1, SUN Zhaoyang1,2, ZHANG Aiqun1
1. State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China
Abstract:Energy supply is an important limiting factor for work capacity of the marine robots, harvesting energy directly from ocean environment is an ideal way to increase energy supply, improve the endurance and load capacity of marine robots, and achieve long-term uninterrupted work. Various forms of ocean environmental energy and their characteristics are introduced in this paper, according to the classification of energy forms, the present status of marine robots surrounding environment energy harvesting technology are introduced. Finally, the characteristics of marine robots environmental energy harvesting and utilization are summarized and the key technologies in the future are discussed.
[1] 封锡盛,李一平.海洋机器人30年[J].科学通报,2013,58(s2):2-7. Feng X S, Li Y P. Thirty years evolution of SIA's unmanned marine vehicles[J]. China Science Bulletin, 2013, 58(s2):2-7.
[2] 封锡盛,李一平,徐红丽.下一代海洋机器人——写在人类创造下潜深度世界记录10912米50周年之际[J].机器人,2011,33(1):113-118. Feng X S, Li Y P, Xu H L. The next generation of unmanned marine vehicles-Dedicated to the 50 anniversary of the human word record diving 10912 m[J]. Robot, 2011, 33(1):113-118.
[3] Monterey Bay Aquarium Research Institute. Autonomous underwater vehicles[EB/OL]. (2015-11-30)[2017-08-30]. http://www.mbari.org/at-sea/vehicles/autonomous-underwater-vehicles/.
[4] Hobson B W, Bellingham J G, Kieft B, et al. Tethys-class long range AUVs-Extending the endurance of propeller-driven cruising AUVs from days to weeks[C]//Autonomous Underwater Vehicles. Piscataway, USA:IEEE, 2012:1-8.
[5] National Oceanography Center. Autosubs[EB/OL]. (2017-05-24)[2017-08-30]. http://noc.ac.uk/facilities/marine-autonomous-robotic-systems/autosubs.
[6] Maeda T, Yokoyama K, Hisatome N, et al. Fuel cell AUV Urashima[J]. Mitsubishi Heavy Industries, Ltd. Technical Review, 2006, 43(1):24-25.
[7] Nithish N. Autonomous underwater vehicle[EB/OL]. (2012-03-19)[2016-12-09]. http://mechmecca.blogspot.jp/2012_03_19_archive.html.
[8] McEwen R S, Hobson B W, McBride L, et al. Docking control system for a 54-cm-diameter (21-in) AUV[J]. IEEE Journal of Oceanic Engineering, 2008, 33(4):550-562.
[9] Hagerman G. Wave energy systems for recharging AUV energy supplies[C]//Autonomous Underwater Vehicles. Piscataway, USA:IEEE, 2002:75-84.
[10] Hidaka S, Ishii K, Watanabe K. Development of underwater wireless power supply system using resonant energy transfer[C]//International Conference on Artificial Life and Robotics. Piscataway, USA:IEEE, 2017:258-261.
[11] 王宏健,于乐,陈江,等.无人水下航行器无线能量传输系统补偿网络研究[J].电工技术学报,2015,30(19):39-46. Wang H J, Yu L, Chen J, et al. Study on compensation network for wireless power transmission system of unmanned underwater vehicle[J]. Transactions of China Electro Technical Society, 2015, 30(19):39-46.
[12] 许康,陈希有,刘丹宁.海下超声耦合无线电能传输系统电学阻抗变换技术[J].中国电机工程学报,2015,35(17):4461-4467. Xu K, Chen X Y, Liu D N. Electrical impedance transformation techniques for an ultrasonic coupling wireless power transfer system under sea water[J]. Proceedings of the Chinese Society for Electrical Engineering, 2015, 35(17):4461-4467.
[13] Yamamoto I. Research on next autonomous underwater vehicle for longer distance cruising[J]. IFAC Papers OnLine, 2015, 48(2):173-176.
[14] Sun C Y, Song B W, Wang P, et al. Shape optimization of blended-wing-body underwater glider by using gliding range as the optimization target[J]. International Journal of Naval Architecture and Ocean Engineering, 2017, 9(6):693-704.
[15] 韩家新.中国近海海洋——海洋可再生能源[M].北京:海洋出版社,2015. Han J X. Coastal sea of China Marine renewable energy[M]. Beijing:Ocean Press, 2015.
[16] 国家海洋局关于印发《海洋可再生能源发展"十三五"规划》的通知[EB/OL].(2017-01-12)[2017-02-01].http://www.soa.gov.cn/zwgk/zcgh/kxcg/201701/t20170112_54473.html. Marine renewable energy development plan in 13th five-year[EB/OL]. (2017-01-12)[2017-02-01]. http://www.soa.gov.cn/zwgk/zcgh/kxcg/201701/t20170112_54473.html.
[17] 郑金海,张继生.海洋能利用工程的研究进展与关键科技问题[J].河海大学学报:自然科学版,2015,43(5):450-455. Zheng J H, Zhang J S. Recent advances and key technologies in marine energy utilization engineering[J]. Journal of Hehai University:Natural Sciences, 2015, 43(5):450-455.
[18] Hermann W A. Quantifying global exergy resources[J]. Energy, 2006, 31(12):1685-1702.
[19] Ageev M D, Jalbert J C, Blidberg D R. Description and analysis of a solar autonomous underwater vehicle (SAUV)[J]. Marine Technology Society Journal, 1998, 32(4):46-51.
[20] Ageev M D, Blidberg D R, Jalbert J, et al. Results of the evaluation and testing of the solar powered AUV and its subsystems[C]//Autonomous Underwater Vehicles. Piscataway, USA:IEEE, 2002:137-145.
[21] Autonomous Underwater System Institute. Solar-powered AUV (SAUV Ⅱ)[EB/OL]. (2007-09-30)[2017-04-10]. http://ausi.org/research/sauv/.
[22] Blidberg D, Mupparapu S, Chappell S, et al. The SAUV Ⅱ (solar powered AUV) test results 2004[C]//OCEANS. Piscataway, USA:IEEE, 2005:545-550.
[23] Crimmins D M, Patty C T, Beliard M A, et al. Long-endurance test results of the solar-powered AUV system[C]//OCEANS. Piscataway, USA:IEEE, 2006:1690-1694.
[24] Jalbert J, Baker J, Duchesney J, et al. A solar-powered autonomous underwater vehicle[C]//OCEANS. Piscataway, USA:IEEE, 2003:1132-1140.
[25] Mairs B, Curry R, Elkaim G. SeaSlug:A low-cost long-duration mobile marine sensor platform for flexible data-collection deployments[DB/OL]. (20013-06-20)[2017-04-15]. http://byron.soe.ucsc.edu/projects/SeaSlug/Documents/ION%20GNSS+%202013/SeaSlug_ION_GNSS.pdf.
[26] Mairs B, Elkaim G. SeaSlug:A high-uptime, long-deployment mobile marine sensor platform[EB/OL]. (2012-04-30)[2017-05-14]. http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=E19AD1948A49ACE753A3E9E21B690ABB?doi=10.1.1.294.4882&rep=rep1&type=pdf.
[27] Higinbotham J R, Moisan J R, Schirtzinger C, et al. Update on the development and testing of a new long duration solar powered autonomous surface vehicle[C]//OCEANS. Piscataway, USA:IEEE, 2008:1677-1686.
[28] Eco Marine Power. Aquarius unmanned surface vessel[EB/OL]. (2014-06-05)[2016-12-12]. http://www.ecomarinepower.com/en/aquarius-usv.
[29] SCOUT Transatlantic. The Scout I build[EB/OL].[2017-08-24]. http://gotransat.com/build.html.
[30] 杨括.太阳能水下机器人载体设计与分析[D].沈阳:沈阳工业大学,2012. Yang K. Design and analyze of body of solar autonomous underwater vehicle[D]. Shenyang:Shenyang University of Technology, 2012.
[31] 续长明,张禹,徐培武.基于太阳能水下机器人的优化设计[J].机械制造与自动化,2011,40(3):138-140. Xu C M, Zhang Y, Xu P W. Optimization design of horizontal wing contour based on solar autonomous underwater vehicle[J]. Machine Building and Automation, 2011, 40(3):138-140.
[32] 孙志峰.国内外海洋能利用技术发展现状[J].中国造船,2015,56(S2):519-526. Sun Z F. Development status of marine energy utilization technology at home and abroad[J]. Ship Building of China, 2015, 56(S2):519-526.
[33] 杨灿军,陈燕虎.海洋能源获取、传输与管理综述[J].海洋技术学报,2015,34(3):111-115. Yang C J, Chen Y H. Review on the power acquisition, transmission and management of marine energies[J]. Journal of Ocean Technology, 2015, 34(3):111-115.
[34] Zheng C W, Shao L T, Shi W L, et al. An assessment of global ocean wave energy resources over the last 45 a[J]. Acta Oceanologica Sinica, 2014, 33(1):92-101.
[35] 罗建,杨屹,董海涛,等.水下环境能源与收集技术[J].水雷战与舰船防护,2013,21(2):29-33. Luo J, Yang Y, Dong H T, et al. Energy and harvesting technology in underwater environment[J]. Mine Warfare and Ship Self Defence, 2013, 21(2):29-33.
[36] 俞建成,刘世杰,金文明,等.深海滑翔机技术与应用现状[J].工程研究,2016,8(2):208-216. Yu J C, Liu S J, Jin W M, et al. The present state of deep-sea underwater glider technologies and applications[J]. Journal of Engineering Studies, 2016, 8(2):208-216.
[37] Liquid Robotics. Energy harvesting ocean robot[EB/OL]. (2016-12-18)[2016-12-18]. http://www.liquid-robotics.com/platform/how-it-works/.
[38] Manley J, Willcox S. The wave glider:A persistent platform for ocean science[C]//OCEANS. Piscataway, USA:IEEE, 2010:5pp.
[39] 杨富茗,王大政.波浪能滑翔机理论和数值计算研究现状[J].舰船科学技术,2016,38(8):1-4. Yang F M, Wang D Z. Research status on theory and numerical calculation of wave glider[J]. Ship Science and Technology, 2016, 38(8):1-4.
[40] Liquid Robotics[EB/OL].[2017-08-30]. https://www.liquid-robotics.com/.
[41] AutoNaut. Autonaut in Chichester marina[EB/OL]. (2016-12-22)[2016-12-24]. http://www.autonautusv.com/gallery/autonaut-chichester-marina.
[42] National Oceanography Center. Autonomous surface vehicles[EB/OL].[2016-12-24]. http://noc.ac.uk/facilities/marine-autonomous-robotic-systems/asv.
[43] Renewable Energy Reaearch. Wave power history[EB/OL]. (2014-12-30)[2016-12-26]. http://www.bluebird-electric.net/wave_powered_ships_marine_renewable_energy_research.htm.
[44] Bowker J A, Townsend N C, Tan M, et al. Experimental study of a wave energy scavenging system onboard autonomous surface vessels (ASVs)[C]//OCEANS. Piscataway, USA:IEEE, 2015:9pp.
[45] Townsend N C, Shenoi R A. Feasibility study of a new energy scavenging system for an autonomous underwater vehicle[J]. Autonomous Robots, 2016, 29(6):1-13.
[46] Bracco G, Giorcelli E, Mattiazzo G. ISWEC:A gyroscopic mechanism for wave power exploitation[J]. Mechanism and Machine Theory, 2011, 45(10):1411-1424.
[47] Townsend N C. In situ results from a new energy scavenging system for an autonomous underwater vehicle[C]//OCEANS. Piscataway, USA:IEEE, 2016:6pp.
[48] Townsend N C. Self powered autonomous underwater vehicles (AUVs):Results from a gyroscopic energy scavenging prototype[J]. IET Renewable Power Generation, 2016, 10(8):1078-1086.
[49] Townsend N C, Shenoi A. Recharging autonomous underwater vehicles from ambient wave induced motions[C]//OCEANS. Piscataway, USA:IEEE, 2013:1-10.
[50] Fenucci D, Caffaz A, Costanzi R, et al. WAVE:A wave energy recovery module for long endurance gliders and AUVs[C]//OCEANS. Piscataway, USA:IEEE, 2016:5pp.
[51] 丁文俊,宋保维,毛昭勇,等.浅水域探测型无人水下航行器波浪能发电系统设计[J].机械工程学报,2015,51(2):141-147. Ding W J, Song B W, Mao Z Y, et al. Wave energy conversion system design for detection unmanned underwater vehicle in shallow water[J]. Journal of Mechanical Engineering, 2015, 51(2):141-147.
[52] 丁文俊,宋保维,毛昭勇,等.浅水域探测型无人水下航行器海洋动能发电装置特性研究[J].西安交通大学学报,2014,48(4):73-78. Ding W J, Song B W, Mao Z Y, et al. Research on characteristics of power generation device for detection UUV by ocean kinetic energy in shallow water[J]. Journal of Xi'An Jiaotong University, 2014, 48(4):73-78.
[53] 丁文俊,宋保维,毛昭勇,等.海洋动能发电装置在水下探测航行器的安装位置对发电性能的影响[J].西安交通大学学报,2016,50(1):108-114. Ding W J, Song B W, Mao Z Y, et al. Influence of installation position of ocean kinetic energy converter on the power generating performance in underwater detection vehicles[J]. Journal of Xi'An Jiaotong University, 2016, 50(1):108-114.
[54] 孙涛,赵江滨,严新平,等.基于AUV的波浪能发电技术研究现状与展望[J].中国航海,2016,39(4):24-28,65. Sun T, Zhao J B, Yan X P, et al. Review on wave power generation technologies for AUV[J]. Navigation of China, 2016, 39(4):24-28,65.
[55] Zheng C W, Pan J. Assessment of the global ocean wind energy resource[J]. Renewable & Sustainable Energy Reviews, 2014, 33(50):382-391.
[56] Rynne P F, von Ellenrieder K D. Unmanned autonomous sailing:Current status and future role in sustained ocean observations[J]. Marine Technology Society Journal, 2009, 43(1):21-30.
[57] Elkaim G H. The atlantis project:A GPS-guided wing-sailed autonomous catamaran[J]. Navigation, 2006, 53(4):237-247.
[58] Elkaim G H, Boyce Lee C O. Experimental validation of GPS-based control of an unmanned wing-sailed catamaran[C]//ION Global Navigation Satellite Systems Conference. North Miami Beach, USA:Curran Associates Inc., 2007:1950-1956.
[59] Harbor Wing Technology. HWT X-3 production vessel design[EB/OL]. (2016-11-15)[2017-03-21]. http://www.harborwingtech.com/HWT-X-3-Production-Design.htm.
[60] Ocean Aero. SubmaranTM S10:Wind and solar-powered freedom to go further and faster[EB/OL]. (2015-12-02)[2016-12-22]. http://www.oceanaero.us/Ocean-Aero-Submaran.
[61] Saildrone 2016[EB/OL]. (2017-03-29)[2017-05-11]. http://saildrone.com/#Technology.
[62] Cokelet E D, Meinig C, Lawrence-Slavas N, et al. The use of saildrones to examine spring conditions in the Bering sea. Instrument comparisons, sea ice meltwater and Yukon River plume studies[C]//OCEANS. Piscataway, USA:IEEE, 2015:309-315.
[63] Rynne P F, Von Ellenrieder K D. A wind and solar-powered autonomous surface vehicle for sea surface measurements[C]//OCEANS. Piscataway, USA:IEEE, 2008:2110-2115.
[64] Sauze C, Neal M. An autonomous sailing robot for ocean observation[C]//In Proceedings of Taros. Berlin, Germany:Springer, 2006:190-197.
[65] Domínguez-Brito A C, Valle-Fernández B, Cabrera-Gámez J, et al. A-TIRMA G2:An oceanic autonomous sailboat[C]//Robotic Sailing. Berlin, Germany:Springer, 2016:3-13.
[66] Offshore Sensing AS. SailBuoy-unmanned surface vessel[EB/OL]. (2017-02-25)[2017-02-26]. http://www.sailbuoy.no/.
[67] Enqvist T, Friebe A, Haug F. Free rotating wingsail arrangement for Åland sailing robots[C]//Robotic Sailing. Berlin, Germany:Springer, 2017:3-18.
[68] Roboat. ASV roboat[EB/OL]. (2017-02-01)[2017-03-18]. http://www.roboat.at/technologie/technologie/.
[69] Alves J C, Cruz N A. FASt-An autonomous sailing platform for oceanographic missions[C]//OCEANS. Piscataway, USA:IEEE, 2008:2097-2103.
[70] Stelzer R, Pröll T, John R I. Fuzzy logic control system for autonomous sailboats[C]//IEEE International Conference on Fuzzy Systems. Piscataway, USA:IEEE, 2007:6pp.
[71] 杨少龙.无人操纵帆船设计及运动控制研究[D].大连:大连海事大学,2013. Yang S L. Study on autonomous sailing boat design and motion control[D]. Dalian:Dalian Maritime University, 2013.
[72] 康梦萁,许劲松,徐建云,等.无人帆船短途路径规划研究[J].船舶工程,2016,38(9):1-5. Kang M Q, Xu J S, Xu J Y, et al. Study of local route planning of autonomous sailboat[J]. Ship Engineering, 2016, 38(9):1-5.
[73] ASV Global. C-Enduro[EB/OL]. (2017-01-07)[2017-02-01]. http://asvg-lobal.com/product/c-enduro/.
[74] 汪洁.海流能转换器水动力特性的数值模拟及实验研究[D].杭州:浙江工业大学,2012. Wang J. Numerical simulation and experimental study of hydrodynamic characteristics in marine current energy converters[D]. Hangzhou:Zhejiang University of Technology, 2012.
[75] Griffiths G. Technology and applications of autonomous underwater vehicles[M]. Boca Raton, USA:CRC Press, 2002.
[76] Scripps Institution of Oceanography. Thermal energy of the ocean powers new autonomous vehicle[EB/OL]. (2010-05-01)[2017-04-16]. https://scripps.ucsd.edu/news/thermal-energy-ocean-powers-new-autonomous-vehicle.
[77] 马捷.水下热滑翔机推进[M].上海:上海交通大学出版社,2013. Ma J. Propulsion of underwater thermal glider[M]. Shanghai:Shanghai Jiaotong University Press, 2013.
[78] Chao Y. Autonomous underwater vehicles and sensors powered by ocean thermal energy[C]//OCEANS. Piscataway, USA:IEEE, 2016:4pp.
[79] Ma Z S, Liu Y H, Wang Y H, et al. Improvement of working pattern for thermal underwater glider[C]//OCEANS. Piscataway, USA:IEEE, 2016:6pp.
[80] Yang Y N, Wang Y H, Ma Z S, et al. A thermal engine for underwater glider driven by ocean thermal energy[J]. Applied Thermal Engineering, 2016, 99:455-464.
[81] Ma Z S, Wang Y H, Wang S X, et al. Ocean thermal energy harvesting with phase change material for underwater glider[J]. Applied Energy, 2016, 178:557-566.
[82] Kong Q L, Ma J, Xia D Y. Numerical and experimental study of the phase change process for underwater glider propelled by ocean thermal energy[J]. Renewable Energy, 2010, 35(4):771-779.
[83] 杨海.水下热滑翔机的温差能热机性能分析与相变材料选择[J].中国舰船研究,2014,9(1):66-71. Yang H. Performance analysis of ocean thermal engines and the selection of phase change materials for an underwater thermal glider[J]. Chinese Journal of Ship Research, 2014, 9(1):66-71.