颜云辉, 徐靖, 陆志国, 宋克臣, 柳博航. 仿人服务机器人发展与研究现状[J]. 机器人, 2017, 39(4): 551-564.DOI: 10.13973/j.cnki.robot.2017.0551.
YAN Yunhui, XU Jing, LU Zhiguo, SONG Kechen, LIU Bohang. Development and Research Status of Humanoid Service Robots. ROBOT, 2017, 39(4): 551-564. DOI: 10.13973/j.cnki.robot.2017.0551.
Abstract:Through review of the research progress of the main humanoid service robots at home and abroad, the research status of body structures and systems, drive and control technologies, information perception and interaction in its field is summarized. The problems to be solved further in the research of humanoid service robots are pointed out, and the development trends are prospected.
[1] 陈骞.美国国家机器人计划资助重点[J].上海信息化,2016(2):78-80. Chen Q. The focus of the US National Robot Program funding[J]. Shanghai Informatization, 2016(2):78-80.
[2] Defense Technical Information Center. Robotics strategy white paper[DB/OL]. (2009-03-19)[2016-11-21]. www.dtic.mil/dtic/tr/fulltext/u2/a496734.pdf.
[3] NASA. National robotics initiative(NRI)[EB/OL]. (2011-07-25)[2016-11-21]. https://www.nasa.gov/robotics/index.html.
[4] European Commission. Research & innovation FP7[EB/OL]. (2007-01-01)[2016-11-21]. http://ec.europa.eu/research/fp7/pdf/fp7-factsheets_en.pdf.
[5] Hofbaur M, Müller A, Piater J, et al. Making better robots-Austria's contribution to the European robotics research roadmap[J]. E & I Elektrotechnik Und Informationstechnik, 2015, 132(4/5):237-248.
[6] New Energy and Industrial Technology Development Organization. 2014 white paper on robotization of industry, business and our life[DB/OL]. (2014-06-05)[2016-11-21]. http://www.nedo.go.jp/content/100563893.pdf.
[7] Korea IT Times. MIC policy-Robots as perfect companions[EB/OL]. (2009-04-17)[2016-11-21]. http://www.koreaittimes.com/story/2969/mic-policy-robots-perfect-companions.
[8] Vukobratovic M, Stepanenko Y. On the stability of anthropomorphic systems[J]. Mathematical Biosciences, 1972, 15(1/2):1-37.
[9] Sugano S, Kato I. WABOT-2:Autonomous robot with dexterous finger-arm coordination control in keyboard performance[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 1987:90-97.
[10] Hashimoto S, Narita S, Kasahara H, et al. Humanoid robots in Waseda University-Hadaly-2 and WABIAN[J]. Autonomous Robots, 2002, 12(1):25-38.
[11] Ogura Y, Aikawa H, Shimomura K, et al. Development of a new humanoid robot WABIAN-2[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2006:76-81.
[12] Omer A M M, Ghorbani R, Lim H O, et al. Semi-passive dynamic walking for biped walking robot using controllable joint stiffness based on dynamic simulation[C]//IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Piscataway, USA:IEEE, 2009:1600-1605.
[13] Hirai K, Hirose M, Haikawa Y, et al. The development of Honda humanoid robot[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 1998:1321-1326.
[14] Takenaka T. The control system for the Honda humanoid robot[J]. Age and Ageing, 2006, 35(2):ii24-ii26.
[15] Honda. Honda unveils all-new ASIMO with significant advancements[EB/OL]. (2011-11-07)[2016-11-21]. http://hondanews.com/releases/cd29e4c7-c889-4378-a86a-3534ed615459.
[16] Kim C H, Yonekura K, Tsujino H, et al. Physical control of the rotation of a flexible object-Rope turning with a humanoid robot[J]. Advanced Robotics, 2011, 25(3/4):491-506.
[17] PAL Robotics. REEM[EB/OL]. (2011-04-28)[2016-11-21]. http://pal-robotics.com/en/products/reem.
[18] SoftBank. Who is Pepeer[EB/OL]. (2014-06-10)[2016-11-21]. http://www.ald.softbankrobotics.com/en/cool-robots/pepper.
[19] Verner I M, Polishuk A, Krayner N. Science class with RoboThespian:Using a robot teacher to make science fun and engage students[J]. IEEE Robotics and Automation Magazine, 2016, 23(2):74-80.
[20] Chen X P, Xie J K, Ji J M, et al. Toward open knowledge enabling for human-robot interaction[J]. Journal of Human-Robot Interaction, 2012, 1(2):100-117.
[21] Kojima K, Sato T, Schmitz A, et al. Sensor prediction and grasp stability evaluation for in-hand manipulation[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2013:2479-2484.
[22] Toyota. TMC develops independent home-living-assistance robot prototype[EB/OL]. (2011-09-21)[2016-11-21]. http://www2.toyota.co.jp/en/news/12/09/0921.html.
[23] IEEE Spectrum. How South Korea's DRC-HUBO robot won the DARPA robotics challenge[EB/OL]. (2015-06-09)[2016-11-21]. http://spectrum.ieee.org/automaton/robotics/humanoids/how-kaist-drc-hubo-won-darpa-robotics-challenge.
[24] NASA. R1 overview[EB/OL]. (2008-03-13)[2016-11-21].https://robonaut.jsc.nasa.gov/R1/index.asp.
[25] NASA. Robonaut 2[EB/OL]. (2016-10-19)[2016-11-21]. http://www.nasa.gov/sites/default/files/fs201402002_jsc_robonaut2_fs_updates4.pdf.
[26] Kaneko K, Kanehiro F, Kajita S, et al. Humanoid robot HRP-2[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2004:1083-1090.
[27] Kawada. Humanoid robot "HRP-3 Promet MK-Ⅱ"[EB/OL]. (2010-11-26)[2016-11-21]. http://global.kawada.jp/mechatronics/hrp3.html.
[28] Kawada. Humanoid robot HRP-4[EB/OL]. (2013-06-14)[2016-11-21]. http://global.kawada.jp/mechatronics/hrp4.html.
[29] Kaneko K, Kanehiro F, Morisawa M, et al. Cybernetic human HRP-4C[C]//IEEE/RAS International Conference on Humanoid Robots. Piscataway, USA:IEEE, 2009:7-14.
[30] Willow Garage. PR2 overview[EB/OL]. (2015-03-04)[2016-11-21]. http://www.willowgarage.com/pages/pr2/specs.
[31] Metta G, Natale L, Nori F, et al. The iCub humanoid robot:An open-systems platform for research in cognitive development[J]. Neural Networks, 2010, 23(8/9):1125-1134.
[32] Nishiwaki K, Kagami S, Kuffner J J, et al. Online humanoid walking control system and a moving goal tracking experiment[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2003:911-916.
[33] Nishiwaki K, Kuffner J, Kagami S, et al. The experimental humanoid robot H7:A research platform for autonomous behaviour[J]. Philosophical Transactions of the Royal Society of London, A:Mathematical, Physical and Engineering Sciences, 2007, 365(1850):79-107.
[34] Ackerman E. This robot can do more push-ups because it sweats[EB/OL]. (2016-10-13)[2016-11-21]. http://spectrum.ieee.org/automaton/robotics/humanoids/this-robot-can-do-more-pushups-because-it-sweats.
[35] Kusuda Y. Toyota's violin-playing robot[J]. Industrial Robot, 2008, 35(6):504-506.
[36] Oh J H, Hanson D, Kim W S, et al. Design of android type humanoid robot Albert HUBO[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2006:1428-1433.
[37] Srinivasa S S, Berenson D, Cakmak M, et al. Herb 2.0:Lessons learned from developing a mobile manipulator for the home[J]. Proceedings of the IEEE, 2012, 100(8):2410-2428.
[38] Guizzo E. Virginia Tech's humanoid robot CHARLI walks tall[EB/OL]. (2010-04-28)[2016-11-21]. http://spectrum.ieee.org/automaton/robotics/humanoids/042810-virginia-tech-humanoid-robot-charli-walks-tall.
[39] Ackerman E. NASA's Valkyrie humanoid upgraded, delivered to robotics labs in U.S. and Europe[EB/OL]. (2016-0-04)[2016-11-21]. http://spectrum.ieee.org/automaton/robotics/humanoids/new-r5-valkyrie-robots.
[40] Akgun B, Cakmak M, Yoo J W, et al. Trajectories and keyframes for kinesthetic teaching:A human-robot interaction perspective[C]//ACM/IEEE International Conference on Human-Robot Interaction. New York, USA:ACM, 2012:391-398.
[41] Boston Dynamics. Atlas-The agile anthropomorphic robot[EB/OL]. (2013-06-13)[2016-11-21]. http://www.bostondynamics.com/robot_Atlas.html.
[42] WALK-MAN. WALK-MAN:Whole-body adaptive locomotion and manipulation[EB/OL]. (2013-10-01)[2016-11-21]. http://www.walk-man.eu.
[43] Vo-Gia L, Kashiri N, Negrello F, et al. Development of a7DOF soft manipulator arm for the compliant humanoid robot COMAN[C]//IEEE International Conference on Robotics and Biomimetics. Piscataway, USA:IEEE, 2015:1106-1111.
[44] Wimböck T, Nenchev D, Albu-Schäffer A, et al. Experimental study on dynamic reactionless motions with DLR's humanoid robot Justin[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2009:5481-5486.
[45] Karlsruhe Institute of Technology. Robots-Versatile helpers in industry and daily life[EB/OL]. (2013-05-06)[2016-11-21]. https://www.kit.edu/kit/english/pi_2013_12935.php.
[46] PAL Robotics. REEM-C[EB/OL]. (2013-11-22)[2016-11-21]. http://pal-robotics.com/en/products/reem-c.
[47] Bruckner D, Vincze M, Hinterleitner I. Towards reorientation with a humanoid robot[M]//Communications in Computer & Information Science, vol.336. Berlin, Germany:Springer, 2012:156-161.
[48] Pateromichelakis N, Mazel A, Hache M A, et al. Head-eyes system and gaze analysis of the humanoid robot Romeo[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2014:1374-1379.
[49] Wang J, Sheng T, Wang J W, et al. System overview of humanoid robot Blackmann[J]. WSEAS Transactions on Systems, 2005, 4(7):1070-1075.
[50] 艳涛.汇童机器人第4、5代集体亮相[J].机器人技术与应用,2012(4):44.Yan T. Hui Tong robot on behalf of the 4th and 5th generation debut[J]. Robot Technique and Application, 2012(4):44.
[51] 吴浪,周炜.浙江大学成功研制大型仿人机器人[J].科技创新与品牌,2011(11):30.Wu L, Zhou W. Zhejiang University successfully developed large-scale humanoid robot[J]. Sci-Tech Innovations and Brands, 2011(11):30.
[52] 吴伟国,郎跃东,梁风.类人猿型机器人"GOROBOT"的可变ZMP双足动步行仿真[J].系统仿真学报,2007,19(17):4000-4003. Wu W G, Lang Y D, Liang F. Simulation of biped dynamic walking for gorilla robot "GOROBOT" on basis of variable ZMP[J]. Journal of System Simulation, 2007, 19(17):4000-4003.
[53] 吴伟国.面向作业与人工智能的仿人机器人研究进展[J].哈尔滨工业大学学报,2015,47(7):1-19. Wu W G. Research progress of humanoid robots for mobile operation and artificial intelligence[J]. Journal of Harbin Institute of Technology, 2015, 47(7):1-19.
[54] Zhao M G, Liu L, Wang J S, et al. Control system design of THBIP-I humanoid robot[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2002:2253-2258.
[55] Ishida T, Takanishi A. A robot actuator development with high backdrivability[C]//IEEE Conference on Robotics, Automation and Mechatronics. Piscataway, USA:IEEE, 2006:144-149.
[56] 罗杨宇,陈恳,张玉茹.机器人机构的反向可驱动性设计[J].机械工程学报,2007,43(6):72-75. Luo Y Y, Chen K, Zhang Y R. Backdrivability design of robot mechanism[J]. Journal of Mechanical Engineering, 2007, 43(6):72-75.
[57] Martin J, Grossard M. Design of a fully modular and backdrivable dexterous hand[J]. International Journal of Robotics Research, 2014, 33(5):783-798.
[58] Asfour T, Schill J, Peters H, et al. ARMAR-4:A 63 DOF torque controlled humanoid robot[C]//IEEE/RAS International Conference on Humanoid Robots. Piscataway, USA:IEEE, 2013:390-396.
[59] Liu H, Yang D P, Jiang L, et al. Development of a multi-DOF prosthetic hand with intrinsic actuation, intuitive control and sensory feedback[J]. Industrial Robot, 2014, 41(4):381-392.
[60] Cummings J P, Ruiken D, Wilkinson E L, et al. A compact, modular series elastic actuator[J]. Journal of Mechanisms and Robotics, 2016, 8(4):No.041016.
[61] Grebenstein M, Albu-Schäffer A, Bahls T, et al. The DLR hand arm system[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2011:3175-3182.
[62] Tsagarakis N G, Li Z, Saglia J, et al. The design of the lower body of the compliant humanoid robot "cCub"[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2011:2035-2040.
[63] Tsagarakis N G, Morfey S, Cerda G M, et al. Compliant humanoid COMAN:Optimal joint stiffness tuning for modal frequency control[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2013:673-678.
[64] Laffranchi M, Chen L, Kashiri N, et al. Development and control of a series elastic actuator equipped with a semi active friction damper for human friendly robots[J]. Robotics and Autonomous Systems, 2014, 62(12):1827-1836.
[65] Moro F L, Tsagarakis N G, Caldwell D G. Walking in the resonance with the COMAN robot with trajectories based on human kinematic motion primitives (kMPs)[J]. Autonomous Robots, 2014, 36(4):331-347.
[66] Kaneko K, Harada K, Kanehiro F, et al. Humanoid robot HRP-3[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2008:2471-2478.
[67] Kaneko K, Kanehiro F, Morisawa M, et al. Humanoid robot HRP-4-Humanoid robotics platform with lightweight and slim body[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2011:4400-4407.
[68] Yamazaki K, Oya R, Nagahama K, et al. Bottom dressing by a life-sized humanoid robot provided failure detection and recovery functions[C]//IEEE/SICE International Symposium on System Integration. Piscataway, USA:IEEE, 2014:564-570.
[69] Petit D, Gergondet P, Cherubini A, et al. Navigation assistance for a BCI-controlled humanoid robot[C]//IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems. Piscataway, USA:IEEE, 2014:246-251.
[70] Koenemann J, Del Prete A, Tassa Y, et al. Whole-body model-predictive control applied to the HRP-2 humanoid[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2015:3346-3351.
[71] Yoshida E, Poirier M, Laumond J P, et al. Whole-body motion planning for pivoting based manipulation by humanoids[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2008:3181-3186.
[72] Paolillo A, Cherubini A, Keith F, et al. Toward autonomous car driving by a humanoid robot:A sensor-based framework[C]//IEEE/RAS International Conference on Humanoid Robots. Piscataway, USA:IEEE, 2015:451-456.
[73] Asano Y, Nakashima S, Kozuki T, et al. Human mimetic foot structure with multi-DOFs and multi-sensors for musculoskeletal humanoid Kengoro[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2016:2419-2424.
[74] Kozuki T, Toshinori H, Shirai T, et al. Skeletal structure with artificial perspiration for cooling by latent heat for musculoskeletal humanoid Kengoro[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2016:2135-2140.
[75] Ott C, Mukherjee R, Nakamura Y. Unified impedance and admittance control[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2010:554-561.
[76] Boaventura T, Medrano-Cerda G A, Semini C, et al. Stability and performance of the compliance controller of the quadruped robot HyQ[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2013:1458-1464.
[77] Calanca A, Muradore R, Fiorini P. A review of algorithms for compliant control of stiff and fixed-compliance robots[J]. IEEE/ASME Transactions on Mechatronics, 2016, 21(2):613-624.
[78] Paine N, Mehling J S, Holley J, et al. Actuator control for the NASA-JSC Valkyrie humanoid robot:A decoupled dynamics approach for torque control of series elastic robots[J]. Journal of Field Robotics, 2015, 32(3):378-396.
[79] Mizuuchi I, Hondo T, Ito T, et al. Development of a whole-body elastic humanoid "Baneoid"[C]//IEEE/RAS International Conference on Humanoid Robots. Piscataway, USA:IEEE, 2015:889-894.
[80] DeDonato M, Dimitrov V, Du R X, et al. Human-in-the-loop control of a humanoid robot for disaster response:A report from the DARPA robotics challenge trials[J]. Journal of Field Robotics, 2015, 32(2):275-292.
[81] Feng S Y, Whitman E, Xinjilefu X, et al. Optimization-based full body control for the DARPA robotics challenge[J]. Journal of Field Robotics, 2015, 32(2):293-312.
[82] Koolen T, Bertrand S, Thomas G, et al. Design of a momentum-based control framework and application to the humanoid robot Atlas[J]. International Journal of Humanoid Robotics, 2016, 13(1):No.1650007.
[83] Nakanishi Y, Asano Y, Kozuki T, et al. Design concept of detail musculoskeletal humanoid "Kenshiro"-Toward a real human body musculoskeletal simulator[C]//IEEE/RAS International Conference on Humanoid Robots. Piscataway, USA:IEEE, 2012:1-6.
[84] Asano Y, Mizoguchi H, Kozuki T, et al. Achievement of twist squat by musculoskeletal humanoid with screw-home mechanism[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2013:4649-4654.
[85] Osada M, Izawa T, Urata J, et al. Approach of "planar muscle" suitable for musculoskeletal humanoids, especially for their body trunk with spine having multiple vertebral[C]//IEEE/RAS International Conference on Humanoid Robots. Piscataway, USA:IEEE, 2011:358-363.
[86] Kozuki T, Mizoguchi H, Asano Y, et al. Design methodology for the thorax and shoulder of human mimetic musculoskeletal humanoid Kenshiro-A thorax structure with rib like surface[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2012:3687-3692.
[87] Han J, Hong D. Development of a full-sized bipedal humanoid robot utilizing spring assisted parallel four-bar linkages with synchronized actuation[C]//ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. New York, USA:ASME, 2011:799-806.
[88] Chitta S, Jones E G, Ciocarlie M, et al. Mobile manipulation in unstructured environments:Perception, planning, and execution[J]. IEEE Robotics and Automation Magazine, 2012, 19(2):58-71.
[89] Elliott S, Valente M, Cakmak M. Making objects graspable in confined environments through push and pull manipulation with a tool[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2016:4851-4858.
[90] Finn C, Tan X Y, Duan Y, et al. Deep spatial autoencoders for visuomotor learning[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2016:512-519.
[91] Li Q, Haschke R, Ritter H. A visuo-tactile control framework for manipulation and exploration of unknown objects[C]//IEEE/RAS International Conference on Humanoid Robots. Piscataway, USA:IEEE, 2015:610-615.
[92] Prats M, Sanz P J, Del Pobil A P. Vision-tactile-force integration and robot physical interaction[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2009:2118-2123.
[93] Modares H, Ranatunga I, Lewis F L, et al. Optimized assistive human-robot interaction using reinforcement learning[J]. IEEE Transactions on Cybernetics, 2015, 46(3):655-667.
[94] Gridseth M, Ramirez O, Quintero C P, et al. ViTa:Visual task specification interface for manipulation with uncalibrated visual servoing[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2016:3434-3440.
[95] 王田苗,陶永,陈阳.服务机器人技术研究现状与发展趋势[J].中国科学:信息科学,2012,42(9):1049-1066. Wang T M, Tao Y, Chen Y. Research status and development trends of the service robotic technology[J]. Scientia Sinica:Informationis, 2012, 42(9):1049-1066.
[96] 王国彪,陈殿生,陈科位,等.仿生机器人研究现状与发展趋势[J].机械工程学报,2015,51(13):27-44.Wang G B, Chen D S, Chen K W et al. The current research status and development strategy on biomimetic robot[J]. Journal of Mechanical Engineering, 2015, 51(13):27-44.