Review of Elastic Actuator Research from Bionic Inspiration
WEI Dunwen1, GE Wenjie2, GAO Tao1
1. School of Mechatronics Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China;
2. School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:Because there are more and more theoretical and applied researches of elastic actuators from bionic inspiration in recent years, it is necessary to summarize and analyze the existing research results and to point out the development trends in the future, so as to promote the further developments of the related theories and bionic engineering applications of elastic actuators. Firstly, the origin and significance of the elastic actuators from bionic inspiration are introduced. Based on the research of elastic actuators, four typical elastic actuators, including the series elastic actuator (SEA), the parallel elastic actuator (PEA), the clutchable elastic actuator (CEA) and the multi-configuration elastic actuator (MEA), are introduced from the structures, features and applications aspects. Finally, the key technologies of elastic actuators are analyzed, the conception and prospect for the future development trends are proposed, and several potential future research directions are put forward.
[1] Ham R, Sugar T, Vanderborght B, et al. Compliant actuator designs[J]. IEEE Robotics and Automation Magazine, 2009, 16(3):81-94.
[2] Grioli G, Wolf S, Garabini M, et al. Variable stiffness actuators:The user's point of view[J]. International Journal of Robotics Research, 2015, 34(6):727-743.
[3] Vanderborght B, Albu-Schaeffer A, Bicchi A, et al. Variable impedance actuators:A review[J]. Robotics and Autonomous Systems, 2013, 61(12):1601-1614.
[4] Robinson D W, Pratt J E, Paluska D J, et al. Series elastic actuator development for a biomimetic walking robot[C]//IEEE International Conference on Advanced Intelligent Mechatronics. Piscataway, USA:IEEE, 1999:561-568.
[5] Robinson D W. Design and analysis of series elasticity in closed-loop actuator force control[D]. Cambridge, USA:Massachusetts Institute of Technology, 2000.
[6] Pratt J E, Krupp B T. Series elastic actuators for legged robots[C]//Proceedings of the SPIE, vol.5422. Bellingham, USA:SPIE, 2004:135-144.
[7] Byl K, Byl M, Rutschmann M, et al. Series-elastic actuation prototype for rough terrain hopping[C]//IEEE International Conference on Technologies for Practical Robot Application. Piscataway, USA:IEEE, 2012:103-110.
[8] Rutschmann M, Satzinger B, Byl M, et al. Nonlinear model predictive control for rough-terrain robot hopping[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2012:1859-1864.
[9] Curran S, Orin D E. Evolution of a jump in an articulated leg with series-elastic actuation[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2008:352-358.
[10] Curran S, Orin D E, Knox B T, et al. Analysis and optimization of a series-elastic actuator for jumping in robots with articulated legs[C]//ASME 2008 Dynamic Systems and Control Conference. New York, USA:ASME, 2008:287-294.
[11] Curran S, Knox B T, Schmiedeler J P, et al. Design of series-elastic actuators for dynamic robots with articulated legs[J]. Journal of Mechanisms and Robotics, 2009, 1(1):212-240.
[12] Haldane D W, Plecnik M M, Yim J K, et al. Robotic vertical jumping agility via series-elastic power modulation[J]. Science Robotics, 2016, 1(1):eaag2048.
[13] Sariyildiz E, Chen G, Yu H. An acceleration-based robust motion controller design for a novel series elastic actuator[J]. IEEE Transactions on Industrial Electronics, 2016, 63(3):1900-1910.
[14] Paine N, Oh S, Sentis L. Design and control considerations for high-performance series elastic actuators[J]. IEEE/ASME Transactions on Mechatronics, 2014, 19(3):1080-1091.
[15] Yu H, Huang S, Chen G, et al. Human-robot interaction control of rehabilitation robots with series elastic actuators[J]. IEEE Transactions on Robotics, 2015, 31(5):1089-1100.
[16] Wolf S, Grioli G, Eiberger O, et al. Variable stiffness actuators:Review on design and components[J]. IEEE/ASME Transactions on Mechatronics, 2016, 21(5):2418-2430.
[17] Hurst J W, Chestnutt J E, Rizzi A A. The actuator with mechanically adjustable series compliance[J]. IEEE Transactions on Robotics, 2010, 26(4):597-606.
[18] Hurst J W, Rizzi A A. Series compliance for an efficient running gait[J]. IEEE Robotics and Automation Magazine, 2008, 15(3):42-51.
[19] Hurst J W, Chestnutt J E, Rizzi A A. An actuator with physically variable stiffness for highly dynamic legged locomotion[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2004:4662-4667.
[20] van Ham R. Compliant actuation for biologically inspired bipedal walking robots[D]. Brussel, Belgium:Vrije Universiteit Brussel, 2006.
[21] van Ham R, Vanderborght B, van Damme M, et al. MACCEPA:The mechanically adjustable compliance and controllable equilibrium position actuator for controlled passive walking[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2006:2195-2200.
[22] van Ham R, Vanderborght B, van Damme M, et al. MACCEPA, the mechanically adjustable compliance and controllable equilibrium position actuator:Design and implementation in a biped robot[J]. Robotics and Autonomous Systems, 2007, 55(10):761-768.
[23] Vanderborght B, Tsagarakis N G, Semini C, et al. MACCEPA 2.0:Adjustable compliant actuator with stiffening characteristic for energy efficient hopping[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2009:544-549.
[24] Vanderborght B, Tsagarakis N G, van Ham R, et al. MACCEPA 2.0:Compliant actuator used for energy efficient hopping robot Chobino1D[J]. Autonomous Robots, 2011, 31(1):55-65.
[25] Tan D J, Brouwer D M, Fumagalli M, et al. A 2-DoF jointwith coupled variable output stiffness[J]. IEEE Robotics and Automation Letters, 2017, 2(1):366-372.
[26] Jafari A, Tsagarakis N G, Vanderborght B, et al. A novel actuator with adjustable stiffness (AwAs)[C]//IEEE International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2010:4201-4206.
[27] Jafari A, Tsagarakis N G, Caldwell D G. A novel intrinsically energy efficient actuator with adjustable stiffness (AwAs)[J]. IEEE/ASME Transactions on Mechatronics, 2013, 18(1):355-365.
[28] Jafari A, Tsagarakis N G, Sardellitti I, et al. A new actuator with adjustable stiffness based on a variable ratio lever mechanism[J]. IEEE/ASME Transactions on Mechatronics, 2014, 19(1):55-63.
[29] Visser L C, Carloni R, Stramigioli S. Energy-efficient variable stiffness actuators[J]. IEEE Transactions on Robotics, 2011, 27(5):865-875.
[30] Carloni R, Visser L C, Stramigioli S. Variable stiffness actuators:A port-based power-flow analysis[J]. IEEE Transactions on Robotics, 2012, 28(1):1-11.
[31] Tsagarakis N G, Sardellitti I, Caldwell D G. A new variable stiffness actuator (CompAct-VSA):Design and modelling[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2011:378-383.
[32] Groothuis S S, Rusticelli G, Zucchelli A, et al. The variablestiffness actuator vsaUT-Ⅱ:Mechanical design, modeling, and identification[J]. IEEE/ASME Transactions on Mechatronics, 2014, 19(2):589-597.
[33] Kim B S, Song J B. Design and control of a variable stiffness actuator based on adjustable moment arm[J]. IEEE Transactions on Robotics, 2012, 28(5):1145-1151.
[34] Choi J, Hong S, Lee W, et al. A robot joint with variablestiffness using leaf springs[J]. IEEE Transactions on Robotics,2011, 27(2):229-238.
[35] 马洪文,赵朋,王立权,等.刚度和等效质量对SEA能量放大特性的影响[J]. 机器人,2012,34(3):275-281.Ma H W, Zhao P, Wang L Q, et a1. Effect of stiffness and equivalent mass on energy amplification characteristics of SEA[J]. Robot, 2012, 34(3):275-281.
[36] 马洪文,王立权,赵朋,等.串联弹性驱动器力驱动力学模型和稳定性分析[J]. 哈尔滨工程大学学报,2012,33(11):1410-1416.Ma H W, Wang L Q, Zhao P, et al. Research of dynamic model and stability of a series elastic actuator[J]. Journal of Harbin Engineering University, 2012, 33(11):1410-1416.
[37] 马洪文,尹博,王立权,等.双刚度弹性驱动器力学特性频域分析[J]. 中国机械工程,2009,20(9):1078-1082.Ma H W, Yin B, Wang L Q, et al. Mechanics analysis of two different stiffness elastic actuator in frequency domain[J]. China Mechanical Engineering, 2009, 20(9):1078-1082.
[38] 张亚平,周建军,陈耀,等.含弹性环的机器人关节变刚度驱动器设计分析[J]. 机械科学与技术,2015,34(2):199-203.Zhang Y P, Zhou J J, Chen Y, et al. Design of variable stiffness actuator with an elastic ring for robot joint[J]. Mechanical Science and Technology, 2015, 34(2):199-203.
[39] 张秀丽,谷小旭,赵洪福,等.一种基于串联弹性驱动器的柔顺机械臂设计[J]. 机器人,2016,38(4):385-394.Zhang X L, Gu X X, Zhao H F, et al. Design of a compliant robotic arm based on series elastic actuator[J]. Robot, 2016, 38(4):385-394.
[40] 何广平, 李士明.可调刚度弹性机器人关节研究与设计[J].北方工业大学学报,2012,24(3):37-41.He G P, Li S M. Research and design of adjustable stiffness elastic robots joint[J]. Journal of North China University of Technology, 2012, 24(3):37-41.
[41] 何福本,梁延德,孙捷夫,等.基于SEA的机器人仿肌弹性驱动关节研究[J]. 中国机械工程,2014,25(7):900-905.He F B, Liang Y D, Sun J F, et al. Study on elastically actuated joints of robot for mimicking musculo-tendinous functions based on SEAs[J]. China Mechanical Engineering, 2014, 25(7):900-905.
[42] 朱秋国,熊蓉,吕铖杰,等.新型串联弹性驱动器设计与速度控制[J]. 电机与控制学报,2015,19(6):83-88.Zhu Q G, Xiong R, Lü C J, et al. Novel series elastic actuator design and velocity control[J]. Electric Machines and Control, 2015, 19(6):83-88.
[43] 王萌,孙雷,尹伟,等.一种面向交互应用的串联弹性驱动器有限时间输出反馈控制方法[J].机器人,2016,38(5):513-521.Wang M, Sun L, Yin W, et al. A finite time output feedback control approach for interaction-oriented series elastic actuators[J]. Robot, 2016, 38(5):513-521.
[44] Mettin U, La Hera P X, Freidovich L B, et al. Parallel elastic actuators as a control tool for preplanned trajectories of underactuated mechanical systems[J]. International Journal of Robotics Research, 2010, 29(9):1186-1198.
[45] Niehues T D, Rao P, Deshpande A D. Compliance in parallel to actuators for improving stability of robotic hands during grasping and manipulation[J]. International Journal of Robotics Research, 2015, 34(3):256-269.
[46] Brown W R, Ulsoy A G. Experimental verification of a passive-assist design approach for improved reliability and efficiency of robot arms[C]//ASME 20125th Annual Dynamic Systems and Control Conference Joint with the JSME 201211th Motion and Vibration Conference. New York, USA:ASME, 2012:113-122.
[47] Brown W R, Ulsoy A G. A maneuver based design of a passive-assist device for augmenting active joints[J]. Journal of Mechanisms and Robotics, 2013, 5(3):No. 031003.
[48] Brown W R, Ulsoy A G. Maneuver based design of a passive-assist device for augmenting linear motion drives[C]//American Control Conference. Piscataway, USA:IEEE, 2013:4530-4537.
[49] Borras J, Dollar A M. Actuation torque reduction in parallel robots using joint compliance[J]. Journal of Mechanisms and Robotics, 2014, 6(2):No. 021006.
[50] Mazumdar A, Spencer S J, Hobart C, et al. Parallel elastic elements improve energy efficiency on the STEPPR bipedal walking robot[J]. IEEE/ASME Transactions on Mechatronics, 2017, 22(2):898-908.
[51] Guenther F, Iida F. Energy-efficient monopod running with a large payload based on open-loop parallel elastic actuation[J]. IEEE Transactions on Robotics, 2017, 33(1):102-113.
[52] Rouse E J, Mooney L M, Herr H M. Clutchable series-elastic actuator:Implications for prosthetic knee design[J]. International Journal of Robotics Research, 2014, 33(13):1611-1625.
[53] Plooij M, Mathijssen G, Cherelle P, et al. Lock your robot:A review of locking devices in robotics[J]. IEEE Robotics and Automation Magazine, 2015, 22(1):106-117.
[54] Plooij M, Wolfslag W, Wisse M. Clutched elastic actuators[J]. IEEE/ASME Transactions on Mechatronics, 2017, 22(2):739-750.
[55] Plooij M, Wisse M, Vallery H. Reducing the energy consumption of robots using the bidirectional clutched parallel elastic actuator[J]. IEEE Transactions on Robotics, 2016, 32(6):1512-1523.
[56] Plooij M, van Nunspeet M, Wisse M, et al. Design and evaluation of the bi-directional clutched parallel elastic actuator (BIC-PEA)[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2015:1002-1009.
[57] Haufle D F, Taylor M, Schmitt S, et al. A clutched parallel elastic actuator concept:Towards energy efficient powered legs in prosthetics and robotics[C]//IEEE International Conference on Biomedical Robotics and Biomechatronics. Piscataway, USA:IEEE, 2012:1614-1619.
[58] Mathijssen G, Furnémont R, Verstraten T, et al. +SPEA introduction:Drastic actuator energy requirement reduction by symbiosis of parallel motors, springs and locking mechanisms[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2016:676-681.
[59] Mathijssen G, Lefeber D, Vanderborght B. Variable recruitmentof parallel elastic elements:Series-parallel elastic actuators(SPEA) with dephased mutilated gears[J]. IEEE/ASME Transactions on Mechatronics, 2015, 20(2):594-602.
[60] Furnemont R, Mathijssen G, Verstraten T, et al. Bi-directional series-parallel elastic actuator and overlap of the actuation layers[J]. Bioinspiration and Biomimetics, 2016, 11(1):No.016005.
[61] 韩亚丽,郝大彬,于建铭,等.新型多模式弹性驱动器的弹跳性能研究[J]. 机械工程学报,2016,52(9):96-104.Han Y L, Hao D B, Yu J M, et al. Bounce performance study on novel multi-mode elastic actuator[J]. Journal of Mechanical Engineering, 2016, 52(9):96-104.
[62] 韩亚丽,祁兵,于建铭,等. 面向助力膝关节外骨骼的弹性驱动器研制及实验研究[J].机器人,2014,36(6):668-675.Han Y L, Qi B, Yu J M, et al. Development and experimentalstudy of elastic actuator for a power-assisted knee exoskeleton[J]. Robot, 2014, 36(6):668-675.
[63] Han Y L, Zhu S, Zhou Z, et al. Research on a multimodal actuator-oriented power-assisted knee exoskeleton[J/OL]. Robotica, 2016:doi:https://doi.org/10.1017/S0263574716000576.
[64] Xu K, Li L, Bai S P, et al. Design and analysis of a metamorphic mechanism cell for multistage orderly deployable/retractable mechanism[J]. Mechanism and Machine Theory, 2017, 111:85-98.