Design of Fall Protection and Control System for Wearers of Lower Limb Prosthesis
ZHAO Xiaodong1, LIU Zuojun1,2, ZHANG Huijun1, YANG Peng1,2
1. School of Control Science and Engineering, Hebei University of Technology, Tianjin 300130, China;
2. Engineering Research Center of Intelligent Rehabilitation and Detecting Technology, Ministry of Education, Tianjin 300130, China
赵晓东, 刘作军, 张慧君, 杨鹏. 下肢假肢穿戴者跌倒保护控制系统设计[J]. 机器人, 2017, 39(4): 481-488.DOI: 10.13973/j.cnki.robot.2017.0481.
ZHAO Xiaodong, LIU Zuojun, ZHANG Huijun, YANG Peng. Design of Fall Protection and Control System for Wearers of Lower Limb Prosthesis. ROBOT, 2017, 39(4): 481-488. DOI: 10.13973/j.cnki.robot.2017.0481.
Abstract:From the perspective of human-robot integration, the fall protection and control system for prosthesis is designed, including fall pre-warning and fall protection control. Firstly, a fall pre-warning system is designed through analyzing the human-machine comprehensive information to implement pre-recognition and pre-warning of the abnormal fall gait of the wearers effectively. The experience of fall protection action is extracted by the method of empirical knowledge library based on the effective protection strategy of the healthy people, and the fall protection strategy is developed for the prosthetic knee joint. The four-link prosthetic mechanism is taken as the controlled object, the motion control model is established through polynomial fitting to design the fall protection control system of lower limb prosthesis based on the event triggered control. The fall warning information is used as the trigger condition, and the knee-joint recovery action of the healthy people when falling down is taken as the target intention to control the scheduled turning of the prosthetic knee joint. Experiments show that the prosthetic knee joint and residual limb can coordinate closely in the same natural space and realize the right protection.
[1] 王启宁,郑恩昊,陈保君,等.面向人机融合的智能动力下肢假肢研究现状与挑战[J].自动化学报,2016,42(12):1780-1793. Wang Q N, Zheng E H, Cheng B J, et al. Recent progress and challenges of robotic lower-limb prostheses for human-robot integration[J]. Acta Automatica Sinica, 2016, 42(12):1780-1793.
[2] 何玉庆,赵忆文,韩建达,等.与人共融——机器人技术发展的新趋势[J].机器人产业,2015(5):74-80. He Y Q, Zhao Y W, Han J D, et al. Co-existence with humans-The new trend of robot technology development[J]. Robot Industry, 2015(5):74-80.
[3] 丁汉.共融机器人的基础理论和关键技术[J].机器人产业,2016(6):12-17. Ding H. The basic theory and key technologies of human-robot integration[J]. Robot Industry, 2016(6):12-17.
[4] 龙亿,杜志江,王伟东.基于人体运动意图卡尔曼预测的外骨骼机器人控制及实验[J].机器人,2015,37(3):304-309. Long Y, Du Z J, Wang W D. Control and experiment for exoskeleton robot based on Kalman prediction of human motion intent[J]. Robot, 2015, 37(3):304-309.
[5] Mukai T, Onishi M, Odashima T, et al. Development of the tactile sensor system of a human-interactive robot "RI-MAN"[J]. IEEE Transactions on Robotics, 2008, 24(2):505-512.
[6] 许祥,侯丽雅,黄新燕,等.基于外骨骼的可穿戴式上肢康复机器人设计与研究[J].机器人,2014,37(2):147-155. Xu X, Hou L Y, Huang X Y, et al. Design and research of a wearable robot for upper limbs rehabilitation based on exoskeleton[J]. Robot, 2014, 37(2):147-155.
[7] Sup F, Bohara A, Goldfarb M. Design and control of a powered knee and ankle prosthesis[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2007:4134-4139.
[8] Shirota C, Simon A M, Rouse E J, et al. The effect of perturbation onset timing and length on tripping recovery strategies[C]//33rd Annual International Conference of the IEEE Engineering-in-Medicine-and-Biology-Society. Piscataway, USA:IEEE, 2011:7833-7836.
[9] Eng J J, Winter D A, Patla A E. Strategies for recovery from a trip in early and late swing during human walking[J]. Experimental Brain Research, 1994, 102(2):339-349.
[10] Zhang F, D'Andrea S E, Nunnery M J, et al. Towards design of a stumble detection system for artificial legs[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2011, 19(5):567-577.
[11] 赵丽娜,刘作军,苟斌,等.基于隐马尔可夫模型的动力型下肢假肢步态预识别[J].机器人,2014,36(3):337-341. Zhao L N, Liu Z J, Gou B, et al. Gait pre-recognition of dynamic lower limb prosthesis based on hidden Markov model[J]. Robot, 2014, 36(3):337-341.
[12] 杨鹏,刘作军,耿艳利,等.智能下肢假肢关键技术研究进展[J].河北工业大学学报,2013,42(1):76-80. Yang P, Liu Z J, Geng Y L, et al. Research advance on key technology of intelligent lower limb prosthesis[J]. Journal of Hebei University of Technology, 2013, 42(1):76-80.
[13] 杨建坤.大腿假肢穿戴者在滑倒过程中的平衡策略研究及其应用[D].北京:清华大学,2006. Yang J K. Studies on human balance strategy of transfemoral prosthesis users during slip gait and its application[D]. Beijing:Tsinghua University, 2006.
[14] 陈国兴,耿艳利,刘作军,等.假肢跌倒预警中基于相关性分析的模糊自适应反馈调节[J].机器人,2015,37(6):732-737,747.Chen G X, Geng Y L, Liu Z J, et al. Fuzzy adaptive feedback regulation for stumble pre-warning of lower limb prosthesis based on the correlation analysis[J]. Robot, 2015, 37(6):732-737,747.
[15] 袁胜发,褚福磊.支持向量机及其在机械故障诊断中的应用[J].振动与冲击,2007,26(11):29-35,58.Yuan S F, Chu F L. Support vector machines and its applications in machine fault diagnosis[J]. Journal of Vibration and Shock, 2007, 26(11):29-35,58.