Multi-Interaction Control for Manipulators in Unknown Environments Based on Hybrid Position-Impedance-Force Control
DUAN Xingguang1, HAN Dingqiang1, MA Xiaodong2, LI Jianxi1, CUI Tengfei1, MA Anji1
1. Intelligent Robotics Institute & Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing 100081, China;
2. Neurosurgical Department, General Hospital of Chinese PLA, Beijing 100853, China
段星光, 韩定强, 马晓东, 李建玺, 崔腾飞, 马安稷. 机械臂在未知环境下基于力/位/阻抗的多交互控制[J]. 机器人, 2017, 39(4): 449-457.DOI: 10.13973/j.cnki.robot.2017.0449.
DUAN Xingguang, HAN Dingqiang, MA Xiaodong, LI Jianxi, CUI Tengfei, MA Anji. Multi-Interaction Control for Manipulators in Unknown Environments Based on Hybrid Position-Impedance-Force Control. ROBOT, 2017, 39(4): 449-457. DOI: 10.13973/j.cnki.robot.2017.0449.
摘要针对人-机械臂交互的不确定性以及环境的未知性,提出了一种基于速度控制的方法来研究人、机械臂和环境三者之间的交互问题.首先通过在机械臂末端安装2个6维力传感器来实现交互力的检测,并在末端工具连接处增加单自由度柔性环节来实现机械臂的柔顺性.其次,基于iTaSC(instantaneous task specification using constraints)方法对机械臂与工具系统的柔顺度建模,在输出空间中建立起速度/位置与力的关系,实现机械臂与环境之间接触力的控制,通过刚度矩阵实现人对机械臂的拖动控制.另外结合力/位/阻抗混合控制方法实现了在安全区域约束下人拖动机械臂来完成一系列基于位置/力的任务,并与未知环境之间达到一个良好的交互.最后将提出的算法在UR5机械臂上进行轮廓跟踪任务的验证,实验结果表明该方法能达到一个较好的交互控制效果.
Abstract:For the uncertainty of human-manipulator interaction and the unknown environment, a velocity control based scheme is developed to study the interaction among the human, the manipulator and the environment. Firstly, two 6-dimension force sensors are mounted at the end-effector of the manipulator to measure the interaction forces, and a compliant link with single DOF (degree of freedom) is added at the tool connection to achieve the compliance of the manipulator. Secondly, the compliance of the manipulator and the tool is modeled based on iTaSC (instantaneous task specification using constraints), so as to relate forces and position/velocities in the output space and realize the contact force control between the manipulator and the environment, and the stiffness matrix is adopted to drag the manipulator by an operator. Through the hybrid force-position-impedance control, the operator can drag the manipulator to complete a series of position/force tasks and interact with the unknown environment under the constraint of the safety area. Finally, the proposed algorithm is tested on a UR5 platform to complete the contour tracking task, which confirms that the proposed approach can implement good interaction control.
[1] Ficuciello F, Villani L, Siciliano B. Variable impedance control of redundant manipulators for intuitive human-robot physical interaction[J]. IEEE Transactions on Robotics, 2015, 31(4):850-863.
[2] 刘维惠,陈殿生,张立志.人机协作下的机械臂轨迹生成与修正方法[J].机器人,2016,38(4):504-512.Liu W H, Chen D S, Zhang L Z. Trajectory generation and adjustment method for robot manipulators in human-robot collaboration[J]. Robot, 2016, 38(4):504-512.
[3] Xiong G L, Chen H C, Zhang R H, et al. Robot-environment interaction control of a flexible joint light weight robot manipulator[J]. International Journal of Advanced Robotic Systems, 2012, 9(1-2):No.76.
[4] Heck D J F, Saccon A, van de Wouw N, et al. Switched position-force tracking control of a manipulator interacting with a stiff environment[C]//American Control Conference. Piscataway, USA:IEEE, 2015:4832-4837.
[5] Nef T, Lum P. Improving backdrivability in geared rehabilitation robots[J]. Medical & Biological Engineering & Computing, 2009, 47(4):441-447.
[6] Rooks B. The harmonious robot[J]. Industrial Robot, 2006, 33(4):125-130
[7] Hirzinger G, Sporer N, Albu-Schaffer A, et al. DLR's torque-controlled light weight robot Ⅲ-Are we reaching the technological limits now?[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2002:1710-1716.
[8] Borghesan G, Willaert B, de Schutter J. A constraint-based programming approach to physical human-robot interaction[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2012:3890-3896.
[9] Magrini E, Flacco F, de Luca A. Control of generalized contact motion and force in physical human-robot interaction[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2015:2298-2304.
[10] Lamy X, Colledani F, Geffard F, et al. Overcoming human force amplification limitations in comanipulation tasks with industrial robot[C]//8th World Congress on Intelligent Control and Automation. Piscataway, USA:IEEE, 2010:592-598.
[11] Mahvash M, Dupont P E. Stiffness control of surgical continuum manipulators[J]. IEEE Transactions on Robotics, 2011, 27(2):334-345.
[12] Capisani L M, Ferrara A. Trajectory planning and second-order sliding mode motion/interaction control for robot manipulators in unknown environments[J]. IEEE Transactions on Industrial Electronics, 2012, 59(8):3189-3198.
[13] de Schutter J, de Laet T, Rutgeerts J, et al. Constraint-based task specification and estimation for sensor-based robot systems in the presence of geometric uncertainty[J]. International Journal of Robotics Research, 2007, 26(5):433-455.
[14] Borghesan G, de Schutter J. Constraint-based specification of hybrid position-impedance-force tasks[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2014:2290-2296.
[15] Cutkosky M R, Kao I. Computing and controlling compliance of a robotic hand[J]. IEEE Transactions on Robotics and Automation, 1989, 5(2):151-165.
[16] Yong Y S, Huang Y, Chiba R, et al. Teaching-playback robot manipulator system in consideration of singularities[C]//IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Piscataway, USA:IEEE, 2013:453-458.
[17] Chiaverini S, Siciliano B, Egeland O. Review of damped least squares inverse kinematics with experiments on an industrial robot manipulator[J]. IEEE Transactions on Control Systems Technology, 1994, 2(2):123-134.
[18] Bassi E, Benzi F, Capisani L M, et al. Characterization of the dynamical model of a force sensor for robot manipulators[C]//7th International Workshop on Robot Motion and Control. Berlin, Germany:Springer, 2009:243-253.