王扬威, 闫勇程, 刘凯, 赵东标. 基于CPG的仿生环形长鳍波动推进器运动控制[J]. 机器人, 2016, 38(6): 746-753. DOI: 10.13973/j.cnki.robot.2016.0746
引用本文: 王扬威, 闫勇程, 刘凯, 赵东标. 基于CPG的仿生环形长鳍波动推进器运动控制[J]. 机器人, 2016, 38(6): 746-753. DOI: 10.13973/j.cnki.robot.2016.0746
WANG Yangwei, YAN Yongcheng, LIU Kai, ZHAO Dongbiao. Motion Control of a Bionic Circular Long-fin Undulating Propeller Based on CPG[J]. ROBOT, 2016, 38(6): 746-753. DOI: 10.13973/j.cnki.robot.2016.0746
Citation: WANG Yangwei, YAN Yongcheng, LIU Kai, ZHAO Dongbiao. Motion Control of a Bionic Circular Long-fin Undulating Propeller Based on CPG[J]. ROBOT, 2016, 38(6): 746-753. DOI: 10.13973/j.cnki.robot.2016.0746

基于CPG的仿生环形长鳍波动推进器运动控制

Motion Control of a Bionic Circular Long-fin Undulating Propeller Based on CPG

  • 摘要: 为了克服一般仿生水下机器人稳定性与机动性的不足,提出一种仿生环形长鳍波动推进器及其控制方法.根据环形长鳍波动推进器的结构特征和推进机理,提出了基于中枢模式发生器(CPG)的运动控制方法.该方法通过相邻耦合的方式,对波动推进器中20个频率和幅值可独立控制的神经元振荡器进行了建模,构建了一种用于该推进器的CPG网络模型.仿真分析了对称波形、非对称波形和环形波形推进控制方式下控制模型中的各振荡子输出信号,以及各参数对输出信号的影响,并试验研究了波形参数对样机游动速度和转弯速度的影响.试验结果显示样机具有一定的稳定性与机动性,直线游动速度和原地转弯速度随波动频率和波动幅值的增大而增大,最大直线游动速度可达109mm/s,最大原地转弯速度可达93°/s.仿真及试验结果证明了此CPG控制模型的可行性和有效性.

     

    Abstract: To overcome shortcomings of poor stability and maneuverability of general bionic underwater robots, a bionic circular-fin propeller and its control method are proposed. A method of motion control based on central pattern generator (CPG) is proposed according to the structure features and propulsion mechanism of circular long-fin undulating propeller. A modeling concerning about 20 frequency-amplitude independently controlled neural oscillators in the propeller, is carried out through adjacent coupling, forming a CPG network model for the propeller. Moreover, the output signals of each oscillator in the control model and the influences of parameters on output signals are analyzed by simulation in the propulsion-control modes of symmetric waveform, asymmetric waveform and circumferential waveform respectively. Furthermore, influences of waveform parameters on swimming speed and turning velocity are tested in experiments. The result shows a certain stability and maneuverability of the prototype. Also its straight-line swimming velocity and standing turning velocity increase with both undulating frequency and amplitude, and can be up to 109 mm/s and 93°/s respectively at maximum. Simulation and experimental results prove the feasibility and validity of the CPG control model.

     

/

返回文章
返回