Dynamic Modeling and Simulation of a 6-UHP Parallel Platform under Base Excitation
WANG Xiaoming1,2, XU Zhenbang1, WANG Bing1,2, LIANG Kaixiang1,2, WU Qingwen1
1. Innovation Lab of Space Robot System, Space Robotics Engineering Center, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China
Abstract:Dynamic modeling and simulation of a 6-UHP (universal-Hooke-prismatic) parallel platform under base excitation are studied for the requirements of vibration isolation and precision pointing technology. Firstly, the structure characteristics of 6-UHP parallel platform are introduced. Then, the theoretical modeling based on Kane formulation is performed, and the complete dynamic equation of the parallel platform is derived. Finally, the theoretical model of the parallel platform is verified by co-simulation. The results indicate that the 6-dimensional acceleration curve obtained from simulation is similar to the input acceleration curve, the maximum relative error is 5.40%, and the minimum relative error is 0.25%. Thus, the accuracy of the dynamic model is fully verified.
[1] Brennan S M, Bronowicki A J, Ryan P J, et al. Control structure interaction testbed: Passive isolation, simulation & test[C]//AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, USA: AIAA, 2006: 2977-2993.
[2] Crocker J H. Fixing the Hubble space telescope[C]//Proceed-ings of the SPIE, vol.1494. Bellingham, USA: SPIE, 1991: 2-8.
[3] Bronowicki A J, Innis J W. A family of full spacecraft-to-payload isolators[J]. Technology Review Journal, 2005, 13(Fall/ Winter): 21-41.
[4] Toyoshima M, Takayama Y, Kunimori H, et al. In-orbit measurements of spacecraft microvibrations for satellite laser communication links[J]. Optical Engineering, 2010, 49(8): No.083604.
[5] Camelo V, Bronowicki A J, Simonian S, et al. Damping and isolation concepts for vibration suppression and pointing performance[C]//AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, USA:AIAA, 2009.
[6] 杨剑锋,徐振邦,刘宏伟,等.光学有效载荷在轨隔振器的设计[J].光学精密工程,2014,22(12):3294-3302.Yang J F, Xu Z B, Liu H W, et al. Design of vibration isolator for optical payload on orbit[J]. Optics and Precision Engineering, 2014, 22(12): 3294-3302.
[7] Chen H J, Bishop Jr R M, Agrawal B N. Payload pointing and active vibration isolation using hexapod platforms[C]//AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, USA: AIAA, 2003: 2196-2214.
[8] Cobb R G, Sullivan J M, Das A, et al. Vibration isolation and suppression system for precision system for precision payloads in space[J]. Smart Materials and Structures, 1999, 8(6): 798-812.
[9] Agrawal B N, Chen H J. Algorithms for active vibration isolation on spacecraft using a Stewart platform[J]. Smart Materials and Structures, 2004, 13(4): 873-880.
[10] Bronowicki A J. Vibration isolator for large space telescopes[J]. Journal of Spacecraft and Rockets, 2006, 43(1): 45-53.
[11] Du Z, Su Y, Yang W, et al. Note: A piezo tip/tilt platform: Structure, kinematics and experiments[J]. Review of Scientific Instruments, 2014, 85(4): No.046102.
[12] Du Z J, Shi R C, Dong W, et al. A piezo-actuated high-precision flexible parallel pointing mechanism: Conceptual design, development and experiments[J]. IEEE Transactions on Robotics, 2014, 30(1): 131-137.
[13] 李伟鹏,黄海.天基精密跟瞄Stewart平台及其关键技术[J].航天控制,2010,28(4):90-97.Li W P, Huang H. Space-based precision tracking and pointing Stewart platform with key technologies[J]. Aerospace Control, 2010, 28(4): 90-97.
[14] 翁沉卉,徐赵东.微重力下Stewart平台的主动减振系统研究分析[J].应用力学学报,2011,28(5):514-517.Weng C H, Xu Z D. Study on active vibration control system of Stewart platform under microgravity[J]. Chinese Journal of Applied Mechanics, 2011, 28(5): 514-517.
[15] Oftadeh R, Aref M M, Taghirad H D. Explicit dynamics formulation of Stewart-Gough platform: A Newton-Euler approach[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA: IEEE, 2010: 2772-2777.
[16] Shao B, Chen L G, Rong W B, et al. Modeling and design of a novel precision tilt positioning mechanism for inter-satellite optical communication[J]. Smart Materials and Structures, 2009, 18(3): No.035009.
[17] Dasgupta B, Mruthyunjaya T S. A Newton-Euler formulation for the inverse dynamics of the Stewart platform manipulator[J]. Mechanism and Machine Theory, 1998, 33(8): 1135-1152.
[18] 辛建,徐振邦,杨剑锋,等.基于6维并联机构的空间微振动模拟器动力学分析及测试[J].机器人,2015,37(5):581-587.Xin J, Xu Z B, Yang J F, et al. Dynamic analysis and test of aspace micro-vibration simulator based on 6-dimensional parallel mechanism[J]. Robot, 2015, 37(5): 581-587.
[19] 代小林,丛大成,韩俊伟,等.基于凯恩方程的并联运动平台多刚体动力学建模[J].液压气动与密封,2008(4):60-63.Dai X L, Cong D C, Han J W, et al. Kane formulation for inverse dynamic of parallel platform[J]. Hydraulics Pneumatics & Seals, 2008(4): 60-63.
[20] Preumont A, Horodinca M, Romanescu I, et al. A six-axis single-stage active vibration isolator based on Stewart platform[J]. Journal of Sound and Vibration. 2007, 300(3-5): 644-661.
[21] de Marneffe B, Avraam M, Deraemacker A, et al. Vibration isolation of precision payloads: A six-axis electromagnetic relaxation isolator[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(2): 395-401.
[22] Lee K C, Hong D K, Jeong Y H, et al. Dynamic simulation of radial active magnetic bearing system for high speed rotor using ADAMS and MATLAB co-simulation[C]//IEEE International Conference on Automation Science and Engineering. Piscataway, USA: IEEE, 2012: 880-885.
[23] Zhou N, Li C, Gao W, et al. A secondary mirror adjustment system with hexapod structure for optical telescope application[C]//Proceedings of the SPIE, vol.9280. Bellingham, USA: SPIE, 2014: No.92800N.