Detumbling Strategy and Impedance Control for Space Robot after Capturing an Uncooperative Satellite
WANG Mingming1,2, LUO Jianjun1,2, WANG Jiawen1, YUAN Jianping1
1. Science and Technology on Aerospace Flight Dynamic Laboratory, Northwestern Polytechnical University, Xi'an 710072, China;
2. Research Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China
王明明, 罗建军, 王嘉文, 袁建平. 空间机器人捕获非合作目标后的消旋策略及阻抗控制[J]. 机器人, 2018, 40(5): 750-761.DOI: 10.13973/j.cnki.robot.170567.
WANG Mingming, LUO Jianjun, WANG Jiawen, YUAN Jianping. Detumbling Strategy and Impedance Control for Space Robot after Capturing an Uncooperative Satellite. ROBOT, 2018, 40(5): 750-761. DOI: 10.13973/j.cnki.robot.170567.
Abstract:An impedance control framework is presented to detumble and stabilize the space robot after capturing a tumbling satellite. Firstly, the dynamics equation of the space robotic system in operational space is derived by employing inverse and forward chain approaches. Subsequently, a fast detumbling strategy using normalized time is designed, where the optimal detumbling time is determined with the imposed end-effector constraints. Finally, with the derived dynamics equation in operational space, an impedance control scheme is presented both for detumbling the target motion and stabilizing the base synchronously. Simulation results are presented for damping out a tumbling satellite and stabilizing the base using a 7 degree-of-freedom kinematically redundant space manipulator, which verifies the performance and effectiveness of the proposed method.
[1] Hirzinger G, Brunner B, Dietrich J, et al. ROTEX-The first remotely controlled robot in space[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 1994:2604-2611.
[2] Inaba N, Oda M. Autonomous satellite capture by a space robot:World first on-orbit experiment on a Japanese robot satellite ETS-VⅡ[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2000:1169-1174.
[3] Ogilvie A, Allport J, Hannah M, et al. Autonomous satellite servicing using the orbital express demonstration manipulator system[C]//9th International Symposium on Artificial Intelligence, Robotics and Automation in Space. 2008:25-29.
[4] Debus T J, Dougherty S P. Overview and performance of the front-end robotics enabling near-term demonstration (FREND) robotic arm[C]//AIAA Infotech@Aerospace Conference and Exhibit. Reston, USA:AIAA, 2009:12pp.
[5] Diftler M A, Mehling J S, Abdallah M E, et al. Robonaut 2-The first humanoid robot in space[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2011:2178-2183.
[6] Flores-Abad A, Ma O, Pham K, et al. A review of space robotics technologies for on-orbit servicing[J]. Progress in Aerospace Sciences, 2014, 68:1-26.
[7] 梁斌,杜晓东,李成,等.空间机器人非合作航天器在轨服务研究进展[J].机器人,2012,34(2):242-256. Liang B, Du X D, Li C, et al. Advances in space robot on-orbit servicing for non-cooperative spacecraft[J]. Robot, 2012, 34(2):242-256.
[8] Breger L, How J P. Safe trajectories for autonomous rendezvous of spacecraft[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(5):1478-1489.
[9] Yoshida K, Hashizume K, Abiko S. Zero reaction maneuver:Flight validation with ETS-VⅡ space robot and extension to kinematically redundant arm[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2001:441-446.
[10] 付宜利,张福海,王树国,等.载体姿态无扰的自由漂浮空间机器人运动学特性研究[J].宇航学报,2008,29(6):1858-1864. Fu Y L, Zhang F H, Wang S G, et al. Research on kinematic characteristic of free floating space robot with zero-disturbance spacecraft attitude[J]. Journal of Astronautics, 2008, 29(6):1858-1864.
[11] Xu W, Li C, Wang X, et al. Study on non-holonomic Cartesian path planning of a free-floating space robotic system[J]. Advanced Robotics, 2009, 23(1-2):113-143.
[12] Lampariello R, Nguyen-Tuong D, Castellini C, et al. Trajectory planning for optimal robot catching in real-time[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2011:3719-3726.
[13] 刘勇,贾庆轩,陈刚,等.基于多目标粒子群优化算法的自由漂浮空间机器人负载最大化轨迹优化[J].机器人,2014,36(4):402-410. Liu Y, Jia Q X, Chen G, et al. Load maximization trajectory optimization for free-floating space robot using multi-objective particle swarm optimization algorithm[J]. Robot, 2014, 36(4):402-410.
[14] Wang M M, Luo J J, Walter U. Trajectory planning of free-floating space robot using particle swarm optimization (PSO)[J]. Acta Astronautica, 2015, 112:77-88.
[15] Zadeh S M H, Khorashadizadeh S, Fateh M M, et al. Optimal sliding mode control of a robot manipulator under uncertainty using PSO[J]. Nonlinear Dynamics, 2016, 84(4):2227-2239.
[16] Wang M M, Luo J J, Walter U. A non-linear model predictive controller with obstacle avoidance for a space robot[J]. Advances in Space Research, 2016, 57(8):1737-1746.
[17] 李永明,孙富春,刘华平,等.自由飞行空间机器人基座位姿调整的模糊PD控制[J].宇航学报,2011,32(7):1508-1515. Li Y M, Sun F C, Liu H P, et al. Fuzzy PD control for base pose adjustment of free-flying space robot[J]. Journal of Astronautics, 2011, 32(7):1508-1515.
[18] Rigatos G, Siano P, Raffo G. A nonlinear H∞ control method for multi-DOF robotic manipulators[J]. Nonlinear Dynamics, 2017, 88(1):329-348.
[19] Nenchev D N, Yoshida K. Impact analysis and post-impact motion control issues of a free-floating space robot subject to a force impulse[J]. IEEE Transactions on Robotics and Automation, 1999, 15(3):548-557.
[20] Cyril X, Misra A K, Ingham M, et al. Postcapture dynamics of a spacecraft-manipulator-payload system[J]. Journal of Guidance, Control, and Dynamics, 2000, 23(1):95-100.
[21] Yoshida K, Dimitrov D, Nakanishi H. On the capture of tumbling satellite by a space robot[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2006:4127-4132.
[22] Abiko S, Lampariello R, Hirzinger G. Impedance control for a free-floating robot in the grasping of a tumbling target with parameter uncertainty[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2006:1020-1025.
[23] Nguyen-Huynh T C, Sharf I. Adaptive reactionless motion for space manipulator when capturing an unknown tumbling target[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2011:4202-4207.
[24] Aghili F. Coordination control of a free-flying manipulator and its base attitude to capture and detumble a noncooperative satellite[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2009:2365-2372.
[25] Aghili F. A prediction and motion-planning scheme for visually guided robotic capturing of free-floating tumbling objects with uncertain dynamics[J]. IEEE Transactions on Robotics, 2012, 28(3):634-649.
[26] 徐文福,孟得山,徐超,等.自由漂浮空间机器人捕获目标的协调控制[J].机器人,2013,35(5):559-567. Xu W F, Meng D S, Xu C, et al. Coordinated control of a free-floating space robot for capturing a target[J]. Robot, 2013, 35(5):559-567.
[27] 孙奎,金明河,崔平远,等.一种新型快速更换装置及其捕获容差[J].机器人,2014,36(1):92-99. Sun K, Jin M H, Cui P Y, et al. A new fast exchange device and its capture tolerance[J]. Robot, 2014, 36(1):92-99.
[28] Flores-Abad A, Zhang L, Wei Z, et al. Optimal capture of a tumbling object in orbit using a space manipulator[J]. Journal of Intelligent & Robotic Systems, 2017, 86(2):199-211.
[29] 程靖,陈力.空间机器人双臂捕获航天器后姿态管理、辅助对接操作一体化ELM神经网络控制[J].机器人,2017,39(5):724-732. Cheng J, Chen, L. ELM neural network control of attitude management and auxiliary docking maneuver after dual-arm space robot capturing spacecraft[J]. Robot, 2017, 39(5):724-732.
[30] Zhang B, Liang B, Wang Z W, et al. Coordinated stabilization for space robot after capturing a noncooperative target with large inertia[J]. Acta Astronautica, 2017, 134:75-84.
[31] Zhou B, Cai G, Liu Y, et al. Motion prediction of a non-cooperative space target[J]. Advances in Space Research, 2018, 61(1):207-222.
[32] Hogan N. Impedance control:An approach to manipulation[C]//American Control Conference. Piscataway, USA:IEEE, 1984:304-313.
[33] Jung S, Hsia T C. Neural network impedance force control of robot manipulator[J]. IEEE Transactions on Industrial Electronics, 1998, 45(3):451-461.
[34] Caccavale F, Chiacchio P, Marino A, et al. Six-DOF impedance control of dual-arm cooperative manipulators[J]. IEEE/ASME Transactions on Mechatronics, 2008, 13(5):576-586.
[35] Ott C, Mukherjee R, Nakamura Y. Unified impedance and admittance control[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2010:554-561.
[36] Siciliano B, Sciavicco L, Villani L, et al. Robotics:Modelling, planning and control[M]. New York, USA:Springer Science & Business Media, 2008.