The Deformed Gesture Tracking Algorithm Based on Feature SpaceSegmentation Modeling
ZHANG Yanbin1,2, CHEN Xiaochun1
1. Key Laboratory of EDA, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, China;
2. Harbin Institute of Technology(Shenzhen), Shenzhen 518055, China
Abstract:In order to solve the tracking problem caused by the deformation and irregular motion of gestures in the process of human-computer interaction, a nonparametric kernel density estimation algorithm based on the feature space segmentation modeling is proposed. Firstly, the AdaBoost classifier in the detection module is used to detect the presence of gestures in the image, and the gesture position information is sent to the tracking module, which accurately extracts the gesture target for color modeling. Then, the probability density image of motion target is obtained by estimating the posterior probability density of each frame image using the color model of the target, which is decomposed into the gesture motion area and the similar color interference region. Finally, the mixed Gauss model is used to weaken the interference of close color objects in the similar color region. The redetection module is started when the target is lost, and the gesture position can be detected by adopting the Bayesian classifier and the variance classifier. The experimental results show that the proposed method resolves the similar color interference and redetection problem in deformed gesture tracking by segmenting the feature space and cascading different classifiers. The proposed algorithm improves the tracking accuracy (>81.5%) and is suitable for complex scenes involving the irregular motion of nonrigid objects, and has a high tracking accuracy.
[1] Mei K, Xu L, Li B, et al. A real-time hand detection system based on multi-feature[J]. Neurocomputing, 2015, 158:184-193.
[2] Yang C J, Duraiswami R, Davis L. Efficient mean-shift tracking via a new similarity measure[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway, USA:IEEE, 2005:176-183.
[3] Chen C Y, Zhang M M, Qiu K J, et al. Real-time robust hand tracking based on Camshift and motion velocity[C]//5th International Conference on Digital Home. Piscataway, USA:IEEE, 2014:20-24.
[4] Hernandez-Belmonte U H, Ayala-Ramirez V. Real-time hand posture recognition for human-robot interaction tasks[J]. Sensors, 2016, 16(1):36.
[5] Xu W, Lee E J. A novel method for hand posture recognition based on depth information descriptor[J]. KSⅡ Transactions on Internet & Information Systems, 2015, 9(2):763-774.
[6] Chiang C T, Tseng P H, Feng K T. Hybrid unified Kalman tracking algorithms for heterogeneous wireless location systems[J]. IEEE Transactions on Vehicular Technology, 2012, 61(2):702-715.
[7] Huang H S, Zhou Y L, Chen P J, et al. Robust hand tracking with posture recognition via online learning[C]//IEEE International Conference on Cloud Computing and Intelligence Systems. Piscataway, USA:IEEE, 2014:65-70.
[8] Yang C J, Jang Y J, Beh J H. Gesture recognition using depth-based hand tracking for contactless controller application[C]//IEEE International Conference on Consumer Electronics. Piscataway, USA:IEEE, 2012:297-298.
[9] 严权峰,王岳斌,白天,等. 基于压缩感知的实时手势检测和跟踪算法[J]. 计算机工程与应用,2016,52(20):182-187.Yan Q F, Wang Y B, Bai T, et al. Real-time gesture detection and tracking algorithm based on compressive sensing[J]. Computer Engineering and Applications, 2016, 52(20):182-187.
[10] 侯荣波,康文雄,房育勋,等. 基于时间上下文跟踪-学习-检测的指尖跟踪方法[J]. 计算机应用,2016,36(5):1371-1377.Hou R B, Kang W X, Fang Y X, et al. Fingertip tracking method based temporal context tracking-learning-detection[J]. Journal of Computer Applications, 2016, 36(5):1371-1377.
[11] 左军毅,梁彦,潘泉,等. 基于多个颜色分布模型的Cam-shift跟踪算法[J]. 自动化学报,2008,34(7):736-742.Zuo J Y, Liang Y, Pan Q, et al. Camshift tracker based on multiple color distribution models[J]. Acta Automatica Sinica, 2008, 34(7):736-742.
[12] Cheng Y. Mean-shift, mode seeking, and clustering[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 1995, 17(8):790-799.
[13] 关然,徐向民,罗雅愉,等. 基于计算机视觉的手势检测识别技术[J]. 计算机应用与软件,2013,30(1):155-159.Guan R, Xu X M, Luo Y Y, et al. A computer vision-based gesture detection and recognition technique[J]. Computer Applications and Software, 2013, 30(1):155-159.
[14] Overett G, Petersson L. Large scale sign detection using HOG feature variants[C]//Intelligent Vehicles Symposium. Piscataway, USA:IEEE, 2011:326-331.
[15] Freund Y, Schapire R E. A desicion-theoretic generalization of on-line learning and an application to boosting[J]. Journal of Computer & System Sciences, 1997, 55(1):119-139.
[16] Weng L, Preneel B. A secure perceptual Hash algorithm for image content authentication[M]//12th IFIP TC6/TC11 International Conference on Communications and Multimedia Security. Berlin, Germany:Springer, 2011:108-121.
[17] Li K, Ran Y, Qin Q. Object-oriented port detection based on mean shift segmentation[C]//International Conference on Electrical and Control Engineering. Piscataway, USA:IEEE, 2010:1399-1402.
[18] Zivkovic Z. Improved adaptive Gaussian mixture model for background subtraction[C]//17th International Conference on Pattern Recognition. Piscataway, USA:IEEE, 2004:28-31.
[19] Sebe N, Cohen I, Huang T S, et al. Skin detection:A Bayesiannetwork approach[C]//International Conference on Pattern Re-cognition. Piscataway, USA:IEEE, 2004:903-906.
[20] 齐丽娜,张博,王战凯. 最大类间方差法在图像处理中的应用[J]. 无线电工程,2006,36(7):25-26.Qi L N, Zhang B, Wang Z K. Application of the Otsu method in image processing[J]. Radio Engineering, 2006, 36(7):25-26.
[21] Kalal Z, Mikolajczyk K, Matas J. Tracking-learning-detection[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2012, 34(7):1409-1422.
[22] 邱迪. 基于HSV与YCrCb颜色空间进行肤色检测的研究[J]. 电脑编程技巧与维护,2012(10):74-75.Qiu D. Research about skin color detection base on HSV and YCrCb color space[J]. Computer Programming Skills & Maintenance, 2012(10):74-75.
[23] Chai D, Bouzerdoum A. A Bayesian approach to skin color classification in YCbCr color space[C]//TENCON 2000. Piscataway, USA:IEEE, 2000:421-424.
[24] Bradski G R. Computer vision face tracking for use in a perceptual user interface[J]. Intel Technology Journal, 1998, Q2(Q2):214-219.
[25] 覃跃虎,支琤,徐奕. 基于三维直方图的改进Camshift目标跟踪算法[J]. 现代电子技术,2014,37(2):29-33.Qin Y H, Zhi C, Xu Y. Improved Camshift objects tracking algorithm based on three-dimensional histogram[J]. Modern Electronics Technique, 2014, 37(2):29-33.
[26] Yao M H, Gu Q L, Wang X B, et al. A novel hand gesture tracking algorithm fusing Camshift and particle filter[C]//Inter-national Conference on Artificial Intelligence and Industrial Engineering. Paris, France:Atlantis Press, 2015:37-40.
[27] Yu Y S, Bi S, Mo Y Y, et al. Real-time gesture recognition system based on Camshift algorithm and Haar-like feature[C]//IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems. Piscataway, USA:IEEE, 2016:337-342.
[28] Soni U, Trivedi A, Roberts N. Real-time hand tracking using integrated optical flow and Camshift algorithm[C]//2016 Second International Conference on Research in Computational Intelligence and Communication Networks. Piscataway, USA:IEEE, 2017:135-140.
[29] 刘亚伟,李小民. 基于BRISK和CamShift的鲁棒目标跟踪研究[J]. 电光与控制,2017,24(3):41-45.Liu Y W, Li X M. A robust target tracking method based on BRISK and CamShift[J]. Electronics Optics & Control, 2017, 24(3):41-45.