路飞, 田国会, 刘国良, 王宇恒. 智能空间下基于WIFI指纹定位与粒子滤波的服务机器人复合全局定位系统设计[J]. 机器人, 2016, 38(2): 178-184.DOI: 10.13973/j.cnki.robot.2016.0178.
LU Fei, TIAN Guohui, LIU Guoliang, WANG Yuheng. A Composed Global Localization System for Service Robot in Intelligent Space Based on Particle Filter Algorithm and WIFI Fingerprint Localization. ROBOT, 2016, 38(2): 178-184. DOI: 10.13973/j.cnki.robot.2016.0178.
With the combination of intelligent space technology and ROS (robot operating system) service robot, a composed global localization system for service robot based on Monte Carlo particle filter algorithm and WIFI fingerprint localization is presented. This system can solve the global localization problem in which the initial pose of service robot is unknown and the robot pose is determined according to sensor information. In the composed localization method, robot rough localization is realized firstly using the WIFI fingerprint localization based on BP (backpropagation) neural network under the support of intelligent space technology, and the estimated position and estimation error are sent to the ROS service robot. Based on the rough localization result, Monte Carlo particle filter algorithm is adopted to get precise position of the ROS robot. The experiment results show that the proposed system can realize zero-configuration and loose coupling between ROS service robot and intelligent space, improve precision of global localization of the ROS service robot effectively, and reduce the iteration time.
[1] 田国会, 李晓磊, 赵守鹏, 等.家庭服务机器人智能空间技术研究与进展[J].山东大学学报:工学版, 2007, 37(5):53-59.Tian G H, Li X L, Zhao S P, et al. Research and development of intelligent space technology for a home service robot[J]. Journal of Shandong University: Engineering Science, 2007, 37(5): 53-59.[2] Xu X W, Wang X D, Tao Y. Smart space automatic services composition based on program synthesis and QoS model[J]. Journal of Computational Information Systems, 2014, 10(14): 6057-6066.[3] Dellaert F, Fox D, Burgard W, et al. Monte Carlo localization for mobile robots[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA: IEEE, 1999: 1322-1328.[4] Fox D, Burgard W, Thrun S. Markov localization for mobile robots in dynamic environments[J]. Journal of Artificial Intelligence Research, 1999, 11: 391-427.[5] 王广奇.基于 RFID 和激光传感器的语义地图更新及机器人定位方法研究[D].济南:山东大学, 2013.Wang G Q. The research of semantic map updates and robot localization based on RFID and laser sensor[D]. Jinan: Shandong University, 2013.[6] Montemerlo M, Thrun S, Koller D, et al. FastSLAM: A factored solution to the simultaneous localization and mapping problem[C]//18th National Conference on Artificial Intelligence. Piscataway, USA: IEEE, 2002: 593-598.[7] 邹国柱, 陈万米, 王燕.基于粒子滤波器的移动机器人自定位方法研究[J].工业控制计算机, 2014, 27(10):43-45.Zou G Z, Chen W M, Wang Y. Research on mobile robot localization based on particle filter algorithm[J]. Industrial Control Computer, 2014, 27(10): 43-45.[8] Thrun S, Burgard W, Fox D. Probabilistic robotics[M]. Cambridge, USA: MIT Press, 2005.[9] 王勇, 陈卫东, 王景川, 等.面向拥挤环境的移动机器人改进粒子滤波定位[J].机器人, 2012, 34(5):596-603.Wang Y, Chen W D, Wang J C, et al. Improved particle filter localization in crowded environments for mobile robots[J]. Robot, 2012, 34(5): 596-603.[10] 宋宇, 李庆玲, 康轶非, 等.平方根容积 Rao-Blackwillised 粒子滤波 SLAM 算法[J].自动化学报, 2014, 40(2):357-367.Song Y, Li Q L, Kang Y F, et al. SLAM with square-root cubature Rao-Blackwillised particle filter[J]. Acta Automatica Sinica, 2014, 40(2): 357-367.[11] Ganganath N, Leung H. Mobile robot localization using odometry and kinect sensor[C]//IEEE International Conference on Emerging Signal Processing Applications. Piscataway, USA: IEEE, 2012: 91-94.[12] 厉茂海, 洪炳镕, 罗荣华, 等.基于单目视觉的移动机器人全局定位[J].机器人, 2007, 29(2):140-144, 178.Li M H, Hong B R, Luo R H, et al. Monocular-vision-based mobile robot global localization[J]. Robot, 2007, 29(2): 140-144, 178.[13] 余洪山, 王耀南.基于粒子滤波器的移动机器人定位和地图创建研究进展[J].机器人, 2007, 29(3):281-289,297.Yu H S, Wang Y N. A review on mobile robot localization and mapbuilding algorithms based on particle filters[J]. Robot, 2007, 29(3): 281-289,297.[14] Quigley M, Conley K, Gerkey B, et al. ROS: An open-source robot operating system[C]//IEEE International Conference on Robotics and Automation: Workshop on Open Source Software. Piscataway, USA: IEEE, 2009: 5-6.