In order to recover the motion ability of the patient's ankle joint, a practical 3DoF (degree of freedom) 2-UPS/RRR parallel mechanism with simple structure is presented, based on the analysis on the mechanisms of existing robots for ankle rehabilitation. The mechanism center of rotation matches accurately with the center of rotation of each patient's ankle, owing to the design of constraint branches and the moving platform in this paper. Inverse kinematics of the mechanism is solved using the analytical method by calculating the freedom of the mechanism, and thereby the velocity Jacobian matrix is established. Then, the workspace of the mechanism, which should meet all the training requirements, is solved by demarcating the driving parameters. Lastly, the kinematics performance of the mechanism is analyzed in simulation based on the Jacobian matrix. The results show that the mechanism is of favourable operability, flexibility and stiffness characteristics within the specified workspace. Moreover, the non-redundant electric motor is in simple structure, unnecessary interferences between the branches are effectively avoided, and the occupancy volume of the entire unit is distinctly reduced, which are superior to some existing ankle rehabilitation robots.
[1] 边辉, 刘艳辉, 梁志成, 等.并联 2-RRR/UPRR 踝关节康复机器人机构及其运动学[J].机器人, 2010, 32(1):6-12.Bian H, Liu Y H, Liang Z C, et al. A novel 2-RRR/UPRR robot mechanism for ankle rehabilitation and its kinematics[J]. Robot, 2010, 32(1): 6-12.[2] 姚太顺, 孟宪杰.踝关节外科[M].北京:中国中医药出版社, 1998. Yao T S, Meng X J. Ankle surgery[M]. Beijing: Press of Traditional Chinese Medicine, 1998.[3] 王强, 孙建华, 郭荣光, 等.踝关节损伤临床诊断分型[J].中国矫形外科杂志, 2000, 7(6):609.Wang Q, Sun J H, Guo R G, et al. Clinical diagnosis typing of ankle injury[J]. The Orthopedic Journal of China, 2000, 7(6): 609.[4] Salter R B, Harris D J. The healing of intra-articular fractures with continuous passive motion[J]. Instructional Course Lectures, 1979, 28: 102-117.[5] Salter R B. The biologic concept of continuous passive motion of synovial joints[J]. Clinical Orthopaedics and Related Research, 1989, 242: 12-25.[6] Girone M, Burdea G M, Bouzit V, et al. A Stewart platform based system for ankle telerehabilitation[J]. Autonomous Robots, 2001, 10(3): 203-212.[7] Dai J S, Zhao T S. Sprained ankle physiotherapy based mechanism synthesis and stiffness analysis of a rehabilitation robotic device[J]. Autonomous Robots, 2004, 16(2): 207-218. [8] 隋鹏举.踝部关节运动建模及踝关节康复机构设计[D].福州:福州大学, 2011. Sui P J. The design of the ankle joint motion modeling and ankle rehabilitation mechanism[D]. Fuzhou: Fuzhou University, 2011.[9] 刘更谦, 高金莲, 杨四新, 等.踝关节康复训练并联机构构型及其运动学分析[J].机电产品开发与创新, 2005, 18(5):13-15. Liu G Q, Gao J L, Yang S X, et al. The configuration of the ankle rehabilitation exercises parallel mechanism and its kinematics analysis[J]. Development & Innovation of Machinery & Electrical Products, 2005, 18(5): 13-15.[10] 赵铁石, 于海波, 戴建生.一种基于 3-RSS/S 并联机构的踝关节康复机器人[J].燕山大学学报, 2005, 29(6):471-475. Zhao T S, Yu H B, Dai J S. An ankle rehabilitation device based on 3-RSS/S parallel mechanism[J]. Journal of Yanshan University, 2005, 29(6): 471-475.[11] 郭晓宁, 高林芳, 姚利纲, 等.具有各项同性的踝关节康复机构[P].中国:CN104306133A, 2015-01-28.Guo X N, Gao L F, Yao L G, et al. Ankle rehabilitation mechanism with isotropic[P]. China: CN104306133A, 2015-01-28.[12] Fang Y F, Wang C Z, Guo S, et al. Design and kinematical performance analysis of a 3-RUS/RRR redundantly actuated parallel mechanism for ankle rehabilitation[J]. Journal of Mechanisms and Robotics, 2013, 5(3): 1-11.[13] Leardini A, O'Connor J J, Catani F, et al. Kinematics of the human ankle complex in passive flexion: A single degree of freedom system[J]. Journal of Biomechanics, 1999, 32(2): 111--118.[14] Leardini A, Stagni R, O'Connor J J. Mobility of the subtalar joint in the intact ankle complex[J]. Journal of Biomechanics, 2001, 34(6): 805-809. [15] 禹润田, 方跃法, 郭盛.绳驱动并联踝关节康复机构设计及运动性能分析[J].机器人, 2015, 37(1):53-63.Yu R T, Fang Y F, Guo S. Design and performance analysis of a rope driven parallel rehabilitation mechanism of ankle joint[J]. Robot, 2015, 37(1): 53-63.[16] Tsoi Y H, Xie S Q. Design and control of a parallel robot for ankle rehabilitation[J]. International Journal of Intelligent Sys- tems Technologies and Applications, 2010, 8(1/2/3/4): 100-113. [17] 郭盛, 孙振瑶, 曲海波.基于支链构造法的新型 6-DOF 并联机构构型设计[DB/OL].(2015-04-17) [2015-07-09]. http://www.cnki.net/kcms/detail/11.2187.TH.2015-0417.0935. 013. html.Guo S, Sun Z Y, Qu H B. Configuration design of 6-DOF parallel mechanisms based on limb construction method [DB/OL]. (2015-04-17) [2015-07-09]. http://www.cnki.net/ kcms/detail/11.2187.TH.2015-0417.0935.013.html.[18] 汪满新, 黄田.面对称 3-SPR 并联机构的运动学分析与尺度综合[J].机械工程学报, 2013, 49(15):22-27.Wang M X, Huang T. Kinematic analysis and scale synthesis of 3-SPR parallel mechanism[J]. Journal of Mechanical Engineering, 2013, 49(15): 22-27.[19] 陈修龙, 高庆, 赵永生.4-UPS-UPU 并联坐标测量机的灵巧度研究[J].计算机集成制造系统, 2012, 18(6):1200-1209.Chen X L, Gao Q, Zhao Y S. Dexterity measures of 4-UPS-UPU parallel coordinate measuring machine[J]. Computer Integrated Manufacturing Systems, 2012, 18(6): 1200-1209.[20] Yoshikawa T. Manipulability of robotic mechanism[J]. International Journal of Robotics Research, 1987, 4(2): 3-9.[21] Salisbury J K, Craig J J. Articulated hands: Force and kinematic issues[J].International Journal of Robotics Research, 1982, 1(1): 4-17. [22] Li Y, Xu Q. Stiffness analysis for a 3-PUU parallel kinematic machine[J]. Mechanism and Machine Theory, 2008, 43(2): 186-200.