Analysis of DOF Properties and Kinematics for Variable Configuration Parallel Multi-dimensional Vibration Platform
CHEN Yuhang1,2, ZHAO Tieshi1,2, SONG Xiaoxin1,2, HE Yong1,3, LI Zhongjie1,2
1. Hebei Provincial Key Laboratory of Parallel Robot and Mechatronic System, Yanshan University, Qinhuangdao 066004, China;
2. Key Laboratory of Advanced Forging & Stamping Technology and Science, Ministry of Education, Yangshan University, Qinhuangdao 066004, China;
3. Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
A linear motor-driven variable configuration parallel multi-dimensional vibration platform with adjustable balance pose is designed and developed based on 3-P(4S) configuration. The constraint screw theory is used to analyze the DOF (degree of freedom) properties of two configurations of which the sub closed-loops are initially installed as a parallelogram and trapezoid. Kinematic models of position and attitude of two configurations are established, the relationship between pose output and driving input is studied, and the nonlinear constraint equations of mechanism with trapezoid installation are solved by iterative search method. According to pose analysis, reachable workspace of mechanism under two initial installation conditions are obtained by using inverse solution search method and positive solution ransacking method respectively, as well as the adjoint rotation workspace under trapezoid installation. By numerical example, the results of the theoretical analysis is verified. Through motion simulation of the mechanism, kinetic output features of the vibration platform under different initial configuration are studied. Motion experiment of physical prototypes is conducted based on theoretical analysis and simulation results. The results of theoretical calculations, simulation analysis and experiment are compared, and the validity of theoretical analysis and feasibility of the prototype engineering applications are verified further.
[1] 夏益霖.多轴振动环境试验的技术、设备和应用[J].导弹与航天运载技术, 1996(6):48-55. Xia Y L. The technology, equipment and application of multi-axis vibration environment testing[J]. Missiles and Space Vehicles, 1996(6): 48-55.[2] 张殿坤, 邱杰, 王建军.多维振动环境试验技术及其应用[J].战术导弹技术, 2008(2):34-37. Zhang D K, Qiu J, Wang J J. Test technology and application of multi-dimension vibration environment[J]. Tactical Missile Technology, 2008(2): 34-37.[3] 张正平, 王宇宏, 朱曦全.动力学综合环境试验技术现状和发展[J].装备环境工程, 2006, 3(4):7-11. Zhang Z P, Wang Y H, Zhu X Q. Current state and developing trend of combined dynamic environmental test[J]. Equipment Environmental Engineering, 2006, 3(4): 7-11.[4] 王伟.两自由度液压振动台设计[D].哈尔滨:哈尔滨工业大学, 2011. Wang W. Design of 2 DOF hydraulic shaking platform[D]. Harbin: Harbin Institute of Technology, 2011.[5] 崔旭利.多输入多输出随机振动试验控制算法及若干问题研究[D].南京:南京航空航天大学, 2011. Cui X L. Control algorithms and some issues for MIMO random vibration test[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2011.[6] 澹凡忠, 王洪波, 黄真.并联 6-SPS 机器人的影响系数及其应用[J].机器人, 1989, 11(5):20-24,29. Tan F Z, Wang H B, Huang Z. Influence coefficient matrices and application of parallel 6-SPS robot manipulator[J]. Robot, 1989, 11(5): 20-24,29.[7] 韩江义, 游有鹏, 王化明, 等.并联机构力传递的分析[J].机器人, 2009, 31(6):523-528. Han J Y, You Y P, Wang H M, et al. Analysis on force transmission of parallel mechanism[J]. Robot, 2009, 31(6): 523-528.[8] 代小林, 黄其涛, 韩俊伟, 等.基于运动学正解的三转动并联机构迭代补偿控制[J].机器人, 2009, 31(6):518-522,528. Dai X L, Huang Q T, Han J W, et al. Iterative compensation control of 3-DOF rotational parallel mechanism based on forward kinematics[J]. Robot, 2009, 31(6): 518-522,528.[9] 张兵.基于 DSP 的液压振动台功率谱复现研究[D].哈尔滨:哈尔滨工业大学, 2013. Zhang B. Research on PSD replication of electro-hydraulic vibration table based on DSP[D]. Harbin: Harbin Institute of Technology, 2013.[10] 高世卿.紧凑型六自由度振动台结构分析与优化[D].哈尔滨:哈尔滨工业大学, 2014. Gao S Q. Analysis and optimization of compact 6-DOF shaking table mechanism[D]. Harbin: Harbin Institute of Technology, 2014.[11] 杨涛, 马嘉, 侯增广, 等.Stewart 并联机构主动隔振平台的非线性 L2 鲁棒控制[J].机器人, 2009, 31(3):210-216, 223. Yang T, Ma J, Hou Z G, et al. Nonlinear L2 robust control of an active vibration isolation platform based on Stewart parallel mechanism[J]. Robot, 2009, 31(3): 210-216,223.[12] 辛建, 徐振邦, 杨剑锋, 等.基于6维并联机构的空间微振动模拟器动力学分析及测试[J].机器人, 2015, 37(5):581-587. Xin J, Xu Z B, Yang J F, et al. Dynamic analysis and test of aspace micro-vibration simulator based on 6-dimensional parallel mechanism[J]. Robot, 2015, 37(5): 581-587.[13] Md Zaglul Shahadat M, Mizuno T, Takasaki M, et al. Parallel-mechanism based vibration isolation system using displacement cancellation control[C]//10th Asian Control Conference. Piscataway, USA: IEEE, 2015: 6pp.[14] Afzali-Far B, Lidström P, Nilsson K. Parametric damped vibrations of Gough-Stewart platforms for symmetric configurations[J]. Mechanism and Machine Theory, 2014, 80: 52-69.[15] Bhutani G, Dwarakanath T A. Novel design solution to high precision 3 axes translational parallel mechanism[J]. Mechan-ism and Machine Theory, 2014, 75: 118-130.[16] Tang H, Li Y M. Development and active disturbance rejection control of a compliant micro-/nanopositioning piezostage with dual mode[J]. IEEE Transactions on Industrial Electron-ics, 2014, 61(3): 1475-1492. [17] Liu J G, Li Y M, Zhang Y, et al. Dynamics and control of a parallel mechanism for active vibration isolation in space station[J]. Nonlinear Dynamics, 2014, 76(3): 1737-1751. [18] Hoque M E, Mizuno T, Ishino Y, et al. A three-axis vibration isolation system using modified zero-power controller with parallel mechanism technique[J]. Mechatronics, 2011, 21(6): 1055-1062. [19] Yun Y, Li Y. Modeling and control analysis of a 3-PUPU dual compliant parallel manipulator for micro positioning and active vibration isolation[J]. Journal of Dynamic Systems, Measurement, and Control, 2012, 134(2): No.021001.[20] Kang B, Mills J K. Vibration control of a planar parallel manipulator using piezoelectric actuators[J]. Journal of Intelligent and Robotic Systems, 2005, 42(1): 51-70. [21] Shen H P, Li J, Deng J M, et al. A novel vibration sieve based on the parallel mechanism[C]//IEEE International Conference on Computer-Aided Industrial Design and Conceptual Design. Piscataway, USA: IEEE, 2009: 2328-2332.[22] 王成军, 李耀明, 马履中, 等.3自由度混联振动筛设计[J].农业机械学报, 2011(S1):69-73. Wang C J, Li Y M, Ma L Z, et al. Design of three degree of freedom hybrid vibration screen[J]. Transactions of the Chinese Society of Agricultural Machinery, 2011(S1): 69-73.[23] 黄真, 刘婧芳, 曾达幸.基于约束螺旋理论的机构自由度分析的普遍方法[J].中国科学:技术科学, 2009, 39(1):84-93. ewline Huang Z, Liu J F, Zeng D X. A general method for mechanism DOF analysis based on constraint screw theory[J]. Science in China: Technological Sciences, 2009, 39(1): 84-93.[24] 黄真, 赵永生, 赵铁石.高等空间机构学[M].北京:高等教育出版社, 2006. Huang Z, Zhao Y S, Zhao T S. Advanced spatial mechan-ism[M]. Beijing: Higher Education Press, 2006.[25] 黄象鼎, 曾钟钢, 马亚南.非线性数值分析的理论与方法[M].武汉:武汉大学出版社, 2004. Huang X D, Zeng Z G, Ma Y N. The theory and methods for nonlinear numerical analysis[M]. Wuhan: Wuhan University Press, 2004.