Simulation of Real-time Dynamic Parameter Identification for Large Non-cooperative Targets Using Adaptive Reaction Null Space Control
ZHANG Bo1,2,3,4, LIANG Bin1,2,3,4, WANG Xueqian3,4, MENG Deshan2,3,4
1. School of Astronautics, Harbin Institute of Technology, Harbin 150002, China;
2. Graduate School at Shenzhen, Harbin Institute of Technology, Shenzhen 518052, China;
3. Graduate School at Shenzhen, Tsinghua University, Shenzhen 518052, China;
4. Tsinghua National Laboratory for Information Science and Technology, Beijing 100084, China
When a large non-cooperative target is captured by a small space robot, the initial momentum of the target may be non-zero and unknown, and the disturbances to the base attitude are large, which will affect the real-time parametric identification of the on-orbit target. To solve this problem, the adaptive reaction null space control is used to minimize the disturbances to the base attitude. Moreover, a momentum increment equation containing the dynamic parameters of the target is established, which is used to compute the unknown parameters based on the angular/linear velocities of the base and angle/angular velocities of the manipulator joint obtained through on-orbit real-time measurements. The numerical simulation results show that the proposed algorithm is able to accurately identify the dynamic parameters of large non-cooperative target in real time when the initial momentum is non-zero and unknown, while maintaining the minimum disturbance to the base.
[1] 梁斌,杜晓东,李成,等.空间机器人非合作航天器在轨服务研究进展[J].机器人,2012,34(2):242-256.Liang B, Du X D, Li C, et al. Advances in space robot on-orbit servicing for non-cooperative spacecraft[J]. Robot, 2012, 34(2): 242-256.[2] 梁斌,徐文福,李成,等.地球静止轨道在轨服务技术研究现状与发展趋势[J].宇航学报,2010,31(1):1-13.Liang B, Xu W F, Li C, et al. The status and prospect of orbital servicing in the geostationary orbit[J]. Journal of Astronautics, 2010, 31(1): 1-13.[3] Bosse A B, Barnds W J, Brown M A, et al. SUMO: Spacecraft for the universal modification of orbits[C]//Proceedings of SPIE, vol.5419. Bellingham, USA: SPIE, 2004: 36-46.[4] Kelm B E, Angielski J A, Butcher S T, et al. FREND: Pushing the envelope of space robotics[J]. Space Research and Satellite Technology, 2008: 239-241.[5] Phoenix[EB/OL]. 2012.8. http://www.darpa.mil/Our-Work/TTO/Programs/Phoenix.aspx.[6] Abiko S, Hirzinger G. On-line parameter adaptation for a momentum control in the post-grasping of a tumbling target with model uncertainty[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA: IEEE, 2007: 847-852.[7] Ma O, Dang H, Pham K. On-orbit identification of inertia properties of spacecraft using a robotic arm[J]. Journal of Guidance, Control and Dynamics, 2008, 31(6): 1761-1771. [8] 金磊,徐世杰.空间机器人抓取未知目标的质量特性参数辨识[J].宇航学报,2012,33(11):1570-1576.Jin L, Xu S J. Inertial parameter identification of unknown object captured by a space robot[J]. Journal of Astronautics, 2012, 33(11): 1570-1576.[9] 田富洋,吴洪涛,赵大旭,等.在轨空间机器人参数辨识研究[J].中国空间科学技术,2010,30(1):10-17.Tian F Y, Wu H T, Zhao D X, et al. Parameter identification of orbital free-floating space robot[J]. Chinese Space Science and Technology, 2010, 30(1): 10 -17.[10] Murotsu Y, Tsujio S, Senda K, et al. System identification and resolved acceleration control of space robots by using experimental system[C]//IEEE/RSJ International Workshop on Intelligent Robots and System. Piscataway, USA: IEEE, 1991: 1669-1674.[11] Murotsu Y, Senda K, Ozaki M, et al. Parameter identification of unknown object handled by free-flying space robot[J]. Journal of Guidance, Control, and Dynamics, 1994, 17(3): 488-494. [12] Yoshida K, Abiko S. Inertia parameter identification for a free-flying space robot[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston, USA: AIAA, 2002.[13] Lampariello R, Hirzinger G. Modeling and experimental design for the on-orbit inertial parameter identification of free-flying space robots[C]//ASME 2005 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference. New York, USA: ASME, 2005: 881-890.[14] 徐文福,何勇,王学谦,等.航天器质量特性参数的在轨辨识方法[J].宇航学报,2010,31(8):1906-1914.Xu W F, He Y, Wang X Q, et al. On orbit identification of mass characteristic parameters for spacecraft[J]. Journal of Astronautics, 2010, 31(8): 1906-1914.[15] 刘宇,李瑰贤,夏丹,等.基于改进遗传算法辨识空间机器人动力学参数[J].哈尔滨工业大学学报,2010,42(11):1734-1739.Liu Y, Li G X, Xia D, et al. Identifying dynamic parameters of a space robot based on improved genetic algorithm[J]. Journal of Harbin Institute of Technology, 2010, 42(11): 1734-1739.[16] 王明,黄攀峰,常海涛.非合作目标航天器质量特性参数辨识[J].飞行力学,2014,32(6):536-540.Wang M, Huang P F, Chang H T. Identification of mass characteristic parameters for non-cooperative target spacecraft[J]. Fight Dynamics, 2014, 32(6): 536-540.[17] Thai C N-H, Sharf I. Adaptive reactionless motion and parameter identification in postcapture of space debris[J]. Journal of Guidance, Control, and Dynamics, 2013, 36(2): 404-414.[18] Yoshida K, Hashizume K, Abiko S. Zero reaction maneuver: Flight validation with ETS-VII space robot and extension to kinematically redundant arm[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA: IEEE, 2001: 441-446.