Design and Dynamic Analysis of Pectoral-Fin Propelled Mechanismwith 2 Degrees of Freedom
LI Zonggang1,2, MAO Zhuyuan1, GAO Pu1, XIE Guangming2
1. School of Mechatronic Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China;
2. Intelligent Control Laboratory, College of Engineering, Peking University, Beijing 100871, China
A novel biomimetic robotic Boxfish is designed in which pectoral fins are symmetrically assembled on both sides and each one with 2 degrees of freedom can achieve flapping, swaying and the composite motion of them, separately. The hydrodynamic model is established for the robotic fish to cruise by rowing-mode. Through numerical simulation, we analyze and obtain the relations between the swimming speed and the values of the movement parameters including period of motion, swaying amplitude and original phase, etc. Its validity is illustrated by the experimental results. On this basis, the straight swimming mode of the robotic fish with rowing-mode is determined. The presented results shows that the biomimetic robotic fish with rowing-mode can swim with high efficiency and speed.
[1] 谭民,王硕.机器人技术研究进展[J].自动化学报, 2013,39(7):963-972.Tan M, Wang S. Research progress on robotics[J]. Acta Automatica Sinica, 2013, 39(7): 963-972.[2] 魏清平,王硕,谭民,等.仿生机器鱼研究的进展与分析[J].系统科学与数学, 2012, 32(10):1274-1286.Wei Q P, Wang S, Tan M, et al. Research development and analysis of biomimetic robotic fish[J]. Journal of Systems Scienceand Mathematical Sciences, 2012, 32(10): 1274-1286.[3] 王田苗,杨兴帮,梁建宏.中央鳍/对鳍推进模式的仿生自主水下机器人发展现状综述[J].机器人, 2013, 35(3):352-362,384.Wang T M, Yang X B, Liang J H. A survey on bionic autonomous underwater vehicles propelled by median and/orpaired fin mode[J]. Robot, 2013, 35(3): 352-362,384.[4] 蔡月日, 毕树生. 胸鳍摆动推进模式仿生鱼研究进展[J]. 机械工程学报, 2011, 47(19):30-37.Cai Y R, Bi S S. Research advances of bionic fish propelled byoscillating paired pectoral foils[J]. Journal of Mechanical Engineering, 2011, 47(19): 30-37.[5] Breder C M. The locomotion of fishes[J]. Zoologica, 1926, 4:159-297.[6] Cheng Y J, Zhuang L X, Tong B G. Analysis of swimmingthree-dimensional waving plates[J]. Journal of Fluid Mechanics, 1991, 232: 341-355.[7] Lighthill M J. Aquatic animal propulsion of high hydromechanical efficiency[J]. Journal of Fluid Mechanics, 1970, 44: 265-301.[8] Webb P W. Kinematics of pectoral fin propulsion in cymatogaster aggregate[J]. Journal of Experiment Biology, 1973,59(3): 697-710.[9] Blake R W. The mechanics of labriform locomotion. 2. An analysis of the recovery stroke and the overall fin beat cycle propulsive efficiency in the angelfish[J]. Journal of Experimental Biology, 1980, 85: 337-342.[10] Kato N. Median and paired fin controllers for biomimetic marine vehicles[J]. Applied Mechanics Reviews, 2005, 58(1-6):238-252.[11] Lauder G V, Anderson E J, Tangorra J, et al. Fish biorobotics:Kinematics and hydrodynamics of self-propulsion[J]. Journal ofExperimental Biology, 2007, 210(16): 2767-2780.[12] Tangorra J L, Davidson S N, Hunter I W, et al. The development of a biologically inspired propulsor for unmanned underwatervehicles[J]. IEEE Journal of Oceanic Engineering, 2007, 32(3):533-550. [13] Xiong G, Lauder G V. Center of mass motion in swimming fish:Effects of speed and locomotor mode during undulatory propulsion[J]. Zoology, 2014, 117(4): 269-281.[14] Dickinson M H, Lehmann F O, Sane S P. Wing rotation and theaerodynamic basis of insect flight[J]. Science, 1999, 284(5422):1954-1960. [15] Su Z S, Yu J Z, Tan M, et al. Implementing flexible and fastturning maneuvers of a multijoint robotic fish[J]. IEEE/ASMETransactions on Mechatronics, 2014, 19(1): 329-338.[16] Yu J Z, Su Z S, Wang M, et al. Control of yaw and pitch maneuvers of a multilink dolphin robot[J]. IEEE Transactions onRobotics, 2012, 28(2): 318-329. [17] Yu J Z, Liu L Z, Wang L, et al. Turning control of a multilink biomimetic robotic fish[J]. IEEE Transactions on Robotics,2008, 24(1): 201-206. [18] Yu J Z, Wang L, Zhao W, et al. Optimal design and motion control of biomimetic robotic fish[J]. Science in China, Series F:Information Sciences, 2008, 51(5): 535-549. [19] Yu J Z, Tan M, Wang S, et al. Development of a biomimetic robotic fish and its control algorithm[J]. IEEE Transactionson Systems, Man, and Cybernetics, Part B: Cybernetics, 2004,34(4): 1798-1810. [20] Kato N, Furushima M. Pectoral fin model for maneuver of underwater vehicles[C]//1996 Symposium on Autonomous Underwater Vehicle Technology. Piscataway, USA: IEEE, 1996: 49-56.[21] Kato N, Inaba T. Guidance and control of fish robot with apparatus of pectoral fin motion[C]//IEEE International Conferenceon Robotics and Automation. Piscataway, USA: IEEE, 1998:446-451.[22] Kato N. Hydrodynamic characteristics of a mechanical pectoralfin[J]. Journal of Fluids Engineering, 1999, 121(3): 605-613. [23] Hishinuma K, Konno A, Mizuno A, et al. Analysis method offlapping fin motion for manta-like underwater robot[C]//7th International Symposium on Marine Engineering. 2005: 581-597.[24] Low K H. Modelling and parametric study of modular undulating fin rays for fish robots[J]. Mechanism and Machine Theory,2009, 44(3): 615-632. [25] Low K H, Zhou C L, Zhong Y. Gait planning for steady swimming control of biomimetic fish robots[J]. Advanced Robotics,2009, 23(7-8): 805-829. [26] Zhou C L, Low K H. Design and locomotion controlof a biomimetic underwater vehicle with fin propulsion[J].IEEE/ASME Transactions on Mechatronics, 2012, 17(1): 25-35.[27] Epstein M, Colgate J E, MacIver M A. Generating thrust witha biologically inspired robotic ribbon fin[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA: IEEE, 2006: 2412-2417.[28] 杨少波,韩小云,张代兵,等.一种新型的胸鳍摆动模式推进机器鱼设计与实现[J].机器人, 2008, 30(6):508-515.Yang S B, Han X Y, Zhang D B, et al. Design and development of a new kind of pectoral oscillation propulsion robot fish[J].Robot, 2008, 30(6): 508-515.[29] Bi S S, Ma H W, Cai Y R, et al. Dynamic modeling of a flexible oscillating pectoral fin for robotic fish[J]. Industrial Robot,2014, 41(5): 421-428. [30] 王兆立,苏玉民,王晓飞,等.仿胸鳍推进系统的水动力实验研究[J].哈尔滨工业大学学报, 2010, 42(7):1141-1144.Wang Z L, Su Y M, Wang X F, et al. Experimental study on thehydrodynamic performance analysis of a pectoral-fin propulsive system[J]. Journal of Harbin Institute of Technology, 2010,42(7): 1141-1144.[31] 陈宏,竺长安,尹协振.机械胸鳍式仿生水下机器人的动力学特性研究[J].机械设计, 2006, 23(10): 24-27.Chen H, Zhu C A, Yin X Z. Study of dynamics property of mechanical pectoral fin typed under water bio-robot[J]. MachineDesign, 2006, 23(10): 24-27.[32] Hu Y H, Zhao W, Xie G M, et al. Development and target following of vision-based autonomous robotic fish[J]. Robotica,2009, 27(7): 1075-1089. [33] Hu Y H, Zhao W, Wang L. Vision-based target tracking andcollision avoidance for two autonomous robotic fish[J]. IEEETransactions on Industrial Electronics, 2009, 56(5): 1401-1410. [34] Wang M, Yu J Z, Tan M, et al. Multimodal swimming controlof a robotic fish with pectoral fins using a CPG network[J]. Chinese Science Bulletin, 2012, 57(10): 1209-1216. [35] Wu Z X, Yu J Z, Su Z S, et al. Towards an Esox lucius inspired multimodal robotic fish[J]. Science China: InformationSciences, 2015, 58(5): No.052203.[36] Crespi A, Lachat D, Pasquier A, et al. Controlling swimmingand crawling in a fish robot using a central pattern generator[J].Autonomous Robots, 2008, 25(1-2): 3-13. [37] Morgansen K A , Triplett B I, Klein D J. Geometric methodsfor modeling and control of free-swimming fin-actuated underwater vehicles[J]. IEEE Transactions on Robotics, 2007, 23(6):1184-1199. [38] Zhang S W, Liu B, Wang L, et al. Design and implementation of a lightweight bioinspired pectoral fin driven by SMA[J].IEEE/ASME Transactions on Mechatronics, 2014, 19(6): 1773-1785.