张国腾, 荣学文, 李贻斌, 柴汇, 李彬. 基于虚拟模型的四足机器人对角小跑步态控制方法[J]. 机器人, 2016, 38(1): 64-74.DOI: 10.13973/j.cnki.robot.2016.0064.
ZHANG Guoteng, RONG Xuewen, LI Yibin, CHAI Hui, LI Bin. Control of the Quadrupedal Trotting Based on Virtual Model. ROBOT, 2016, 38(1): 64-74. DOI: 10.13973/j.cnki.robot.2016.0064.
In order to improve the stability of the trotting quadruped robot and to decouple the control of the robot torso motion along six directions, an approach based on virtual model is presented for trot gait control. The controller mainly consists of two main modules: the virtual model control at support phase and the virtual model control at flight phase. During the support phase, the mathematical relationship are mapped between the joint torques of diagonal support legs and the virtual forces acted on the center-of-mass of the torso. And the values of virtual torso forces are regulated to control the torso attitude and height, as well as the forward velocity and the yaw angular velocity of the robot. During the flight phase, lateral velocity is introduced to plan the toe trajectory. And virtual spring-damper sections are implemented to drive the flight toes to track the planned trajectories. In addition, while designing the controller, a state machine is introduced to monitor the legs' states and output phase switching commands for trot gait regulation. The simulations show that the robot is able to trot omni-directionally on flat ground as well as uneven terrains, even suffering from external impacts. And thus the effectiveness and robustness of the controller are proved.
[1] Nanua P, Waldron K J. Energy comparison between trot, bound,and gallop using a simple model[J]. Journal of BiomechanicalEngineering, 1995, 117(4): 466-473.[2] Kimura H, Fukuoka Y, Cohen A H. Adaptive dynamic walking of a quadruped robot on natural ground based on biological concepts[J]. International Journal of Robotics Research, 2007,26(5): 475-490. [3] Matos V, Santos C P. Omnidirectional locomotion in aquadruped robot: A CPG-based approach[C]//IEEE/RSJ 2010International Conference on Intelligent Robots and Systems.Piscatway, USA: IEEE, 2010: 3392-3397.[4] Barasuol V, Buchli J, Semini C, et al. A reactive controllerframework for quadrupedal locomotion on challenging terrain[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA: IEEE, 2013: 2554-2561.[5] Xie H, Ahmadi M, Shang J, et al. An intuitive approach forquadruped robot trotting based on virtual model control[J]. Proceedings of the Institution of Mechanical Engineers, Part I:Journal of Systems and Control Engineering, 2015, 229(4):342-355. [6] Kurazume R, Yoneda K, Hirose S. Feedforward and feedbackdynamic trot gait control for quadruped walking vehicle[J]. Autonomous Robots, 2002, 12(2): 157-172. [7] Zhang S, Gao J Y, Duan X G, et al. Trot pattern generation forquadruped robot based on the ZMP stability margin [C] //International Conference on Complex Medical Engineering. Piscatway, USA: IEEE, 2013: 608-613.[8] Raibert M H. Legged robots that balance[M]. Cambridge, USA:MIT Press, 1986.[9] Raibert M H. Trotting, pacing and bounding by a quadrupedrobot[J]. Journal of Biomechanics, 1990, 23(suppl.1): 79-98.[10] Raibert M, Blankespoor K, Nelson G, et al. Bigdog, therough-terrain quadruped robot[C]//Proceedings of the 17thIFAC World Congress, vol.17. Laxenburg, Austria: IFAC, 2008:10822-10825.[11] Michael K. Meet Boston dynamics' LS3-the latest robotic warmachine[Z/OL]. [2015-07-29]. 2012. http://ro.uow.edu.au/cgi/viewcontent.cgi?article=3782&context=eispapers.[12] Pratt J. Virtual model control of a biped walking robot[D]. Cambridge, USA: MIT, 1995.[13] Pratt J, Torres A, Dilworth P, et al. Virtual actuator control[C]//IEEE/RSJ International Conference on Intelligent Robots andSystems. Piscataway, USA: IEEE, 1996: 1219-1226.[14] Pratt J, Chew C M, Torres A, et al. Virtual model control: Anintuitive approach for bipedal locomotion[J]. International Journal of Robotics Research, 2001, 20(2): 129-143. [15] Havoutis I, Semini C, Caldwell D G. Virtual model controlfor quadrupedal trunk stabilization[Z/OL]. [2015-07-29]. http://ihavoutis.github.io/publications/2013/dw13 havoutis.pdf.[16] Gehring C, Coros S, Hutter M, et al. Control of dynamic gaitsfor a quadrupedal robot[C]//IEEE International Conferenceon Robotics and Automation. Piscataway, USA: IEEE, 2013:3287-3292.[17] 鄂明成,刘虎,张秀丽,等.一种粗糙地形下四足仿生机器人的柔顺步态生成方法[J].机器人, 2014, 36(5): 584-591.E M C, Liu H, Zhang X L, et al. Compliant gait generation fora quadruped bionic robot walking on rough terrains[J]. Robot,2014, 36(5): 584-591.[18] Yoneda K, Iiyama H, Hirose S. Intermittent trot gait of aquadruped walking machine dynamic stability control of anomnidirectional walk[C]//IEEE International Conference onRobotics and Automation. Piscataway, USA: IEEE, 1996:3002-3007.[19] Rong X, Li Y, Ruan J, et al. Design and simulation for a hydraulic actuated quadruped robot[J]. Journal of Mechanical Science and Technology, 2012, 26(4): 1171-1177. [20] 柴汇,孟健,荣学文,等.高性能液压驱动四足机器人SCalf 的设计与实现[J].机器人, 2014, 36(4): 385-391.Chai H, Meng J, Rong X W, et al. Design and implementation ofSCalf, an advanced hydraulic quadruped robot[J]. Robot, 2014,36(4): 385-391.[21] Havoutis I, Semini C, Buchli J, et al. Quadrupedal trottingwith active compliance[C]//IEEE International Conference onMechatronics. Piscataway, USA: IEEE, 2013: 610-616.