Type Synthesis and Analysis of a Family of Novel Roll-Pitch Platform with Virtual Rotation Axis
LI Erwei1,2, ZHAO Tieshi1,2, CHEN Yuhang1,2, WANG Chang3, ZHAO Yanzhi1,2, BIAN Hui1,2
1. Parallel Robot and Mechatronic System Laboratory of Hebei Province, Yanshan University, Qinhuangdao 066004, China;
2. Key Laboratory of Advanced Forging & Stamping Technology and Science }(Yanshan University), Ministry of Education, Qinhuangdao 066004, China;
3. Technology Research Institute for Heavy Machinery, China First Heavy Industries, Dalian 116600, China
李二伟, 赵铁石, 陈宇航, 王唱, 赵延治, 边辉. 一类含有虚拟转轴的新型摇摆台构型综合与分析[J]. 机器人, 2016, 38(1): 41-48.DOI: 10.13973/j.cnki.robot.2016.0041.
LI Erwei, ZHAO Tieshi, CHEN Yuhang, WANG Chang, ZHAO Yanzhi, BIAN Hui. Type Synthesis and Analysis of a Family of Novel Roll-Pitch Platform with Virtual Rotation Axis. ROBOT, 2016, 38(1): 41-48. DOI: 10.13973/j.cnki.robot.2016.0041.
To satisfy the demands of bearing capacity and loading space for large-scale heavy-load motion simulation, a family of novel roll-pitch platform mechanisms with a virtual rotation axis are synthesized based on the principle of equivalent substitution of kinematic chain and the existence condition of rotation axes in parallel mechanisms. The structure features and DoF (degree of freedom) properties of the roll-pitch platform mechanism are analyzed by using constraint-screw system discriminance. On the basis of actuating selection, kinematic and dynamic models of the 2-RPR-RRRAU-III-E+2-SPU mechanism, a representable type of this family, are derived by screw theory. A numerical example is applied to analyzing a type of mechanism with prospects for engineering applications. This mechanism not only has large loading space, but also can realize static-load balancing, which will be available for large-scale heavy-load motion simulation platform.
[1] 谢涛,陈在礼,刘军考.飞行仿真转台框架结构动力学优化设计[J].系统仿真学报,2004,16(10):2228-2229,2233.Xie T, Chen Z L, Liu J K. Structural optimum design of flight motion simulation table's frame[J]. Journal of System Simulation, 2004, 16(10): 2228-2229,2233.[2] 乔健,高云国,韩光宇,等.水平式两轴转台中库德光路的快速装调[J].光学精密工程,2010,18(8):1760-1765.Qiao J, Gao Y G, Han G Y, et al. Fast alignment of Coude optical system in alt-alt two axis tracking turntable[J]. Optics and Precision Engineering, 2010, 18(8): 1760-1765.[3] Shockley J A, Zetterstrom S. 50 years of the central inertial and GPS test facility[C]//U.S. Air Force T & E Days 2009. Reston, USA: AIAA, 2009.[4] Gosselin C M, Caron F. Two degree-of-freedom spherical orienting device, United States: 5966991[P]. 1999-10-19.[5] 李永泉,张立杰,郭菲,等.球面2-DOF冗余驱动并联机器人静力学全解[J].机械工程学报,2011,47(19):22-29.Li Y Q, Zhang L J, Guo F, et al. Static full-solutions of spherical 2-DOF parallel manipulator with actuation redundancy[J]. Journal of Mechanical Engineering, 2011, 47(19): 22-29.[6] Dunlop G R, Jones T P. Position analysis of a two DOF parallel mechanism -- the Canterbury tracker[J]. Mechanism and Machine Theory, 1999, 34(4): 599-614. [7] 罗中宝,杨志东,丛大成,等.2 自由度驱动冗余摇摆台的设计[J].机器人,2012,34(5):574-580.Luo Z B, Yang Z D, Cong D C, et al. Design of 2DOF motion simulator with actuation redundancy[J]. Robot, 2012, 34(5): 574-580.[8] Zeng D X, Huang Z, Lu W J. A family of novel 2 DOF rotational decoupled parallel mechanisms[C]//IEEE International Conference on Mechatronics and Automation. Piscataway,USA: IEEE, 2007: 2478-2483.[9] Carricato M, Parenti-Castelli V. A novel fully decoupled two-degrees-of-freedom parallel wrist[J]. International Journal of Robotics Research, 2004, 23(6): 661-667. [10] Li J M, Zhang G K, Müller A, et al. A family of remote center of motion mechanisms based on intersecting motion planes[J]. Journal of Mechanical Design, 2013, 135(9): No.091009.[11] Kuo C-H, Dai J S. Kinematics of a fully-decoupled remote center-of-motion parallel manipulator for minimally invasive surgery[J]. Journal of Medical Devices, 2012, 6(2): No.021008.[12] Zhao T S, Dai J S, Huang Z. Geometric analysis of overconstrained parallel manipulators with three and four degrees of freedom[J]. JSME International Journal, Series C: Mechanical Systems, Machine Elements and Manufacturing, 2002, 45(3): 730-740. [13] Zeng D X, Huang Z. Type synthesis of the rotational decoupled parallel mechanism based on screw theory[J]. Science China: Technological Sciences, 2011, 54(4): 998-1004. [14] 赵铁石,赵永生,黄真.欠秩并联机器人能连续转动转轴存在的物理条件和数学判据[J].机器人,1999,21(5):347-351.Zhao T S, Zhao Y S, Huang Z. Physical and mathematical conditions of existence of axes about which platform of deficient-rank parallel robots can rotate continuously[J]. Robot, 1999, 21(5): 347-351[15] 黄真,赵永生,赵铁石.高等空间机构学[M].北京:高等教育出版社,2006:115-135.Huang Z, Zhao Y S, Zhao T S. Advanced spatial mechanism[M]. Beijing: Higher Education Press, 2006: 115-135.[16] 赵铁石,黄真.欠秩空间并联机器人输入选取的理论与应用[J].机械工程学报,2000,36(10):81-85.Zhao T S, Huang Z. Theory and application of selecting actuating components of spatial parallel mechanisms[J]. Journal of Mechanical Engineering, 2000, 36(10): 81-85.[17] 严军,黄真.多回路空间机构运动分析 [J].华南工学院学报,1985,13(4):18-27.Yan J, Huang Z. Kinematical analysis of multi-loop spatial mechanism[J]. Journal of South China University of Technology, 1985, 13(4): 18-27.[18] Zhao T S, Geng M C, Chen Y H, et al. Kinematics and dynamics Hessian matrices of manipulators based on screw theory[J]. Chinese Journal of Mechanical Engineering, 2015, 28(2): 226-235.