Visual Servoing Control Strategy for On-Orbit Servicing ofSpace Manipulator System
LIU Dongyu1,2, LIU Hong1, HE Yu2, ZHANG Bainan2, LI Zhiqi1, JIN Minghe1
1. State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150080, China;
2. Institute of Manned Spacecraft System Engineering, China Academy of Space Technology, Beijing 100094, China
Abstract:Aiming at the space manipulator/dexterous hand system screwing bolts on-orbit, the dimension chain errors of the system are analyzed firstly. To correct position and pose errors caused by zero-gravity and on-orbit assembly of manipulator and simulated orbital replacable unit, especially to eliminate the random errors caused by the dexterous hand grabbing an electric tool, a visual servoing control strategy is proposed. In the proposed strategy, the position and posture of the electric tool are measured by global cameras after astronauts calibrating its exact operating position and posture, and the manipulator is introduced into visual servo control. A visual servoing controller is designed, and the convergence proof and stability analysis of the control algorithm are given. In on-orbit implementation of bolt-screwing task of the manipulator, the requirement of position and pose errors less than 3 mm/2° is achieved.
[1] Gregory T H, Newman M. Thermal design considerations of the robotic refueling mission (RRM)[C]//41st International Conference on Environmental Systems. Reston, USA:AIAA, 2011:12pp.
[2] Gefke G G, Janas A, Pellegrino J, et al. Advances in robotic servicing technology development[C]//AIAA SPACE 2015 Conference and Exposition. Reston, USA:AIAA, 2015:9pp.
[3] Ahlstrom T D, Diftler M A, Berka R B, et al. Robonaut 2 on the International Space Station:Status update and preparations for IVA mobility[C]//AIAA SPACE 2013 Conference and Exposition. Reston, USA:AIAA, 2013:14pp.
[4] Ambrose R O. Development and deployment of Robonaut 2 to the International Space Station[R]. Houston, USA:JohnsonSpace Center, 2011.
[5] Diftler M A. Robonaut 2(R2) overview[R]. Houston, USA:Johnson Space Center, 2010.
[6] Badger J M, Hulse A M, Taylor R C, et al. Model-based robotic dynamic motion control for the Robonaut 2 humanoid robot[C]//13th IEEE-RAS International Conference on Humanoid Robots. Piscataway, USA:IEEE, 2013:62-67.
[7] 王麟琨,徐德,谭民.机器人视觉伺服研究进展[J].机器人,2004,26(3):277-282. Wang L K, Xu D, Tan M. Survey of research on robotic visual servoing[J]. Robot, 2004, 26(3):277-282.
[8] 贾丙西,刘山,张凯祥,等.机器人视觉伺服研究进展:视觉系统与控制策略[J].自动化学报,2015,41(5):861-873.Jia B X, Liu S, Zhang K X, et al. Survey on robot visual servo control:Vision system and control strategies[J]. Acta Automatica Sinica, 2015, 41(5):861-873.
[9] 于登云,孙京,马兴瑞.空间机械臂技术及发展建议[J].航天器工程,2007,16(4):1-8. Yu D Y, Sun J, Ma X R. Suggestion on development of Chinese space manipulator technology[J]. Spacecraft Engineering, 2007, 16(4):1-8.
[10] 梁斌,杜晓东,李成,等.空间机器人非合作航天器在轨服务研究进展[J].机器人,2012,34(2):242-256. Liang B, Du X D, Li C, et al. Advances in space robot on-orbit servicing for non-cooperative spacecraft[J]. Robot, 2012, 34(2):242-256.
[11] 苗锡奎,朱枫,郝颖明,等.基于特征点不确定性加权误差的位姿估计新方法[J].光电子. 激光,2012,23(7):1348-1355. Miao X K, Zhu F, Hao Y M, et al. A new pose estimation method based on uncertainty-weighted errors of the feature points[J]. Journal of Optoelectronics. Laser, 2012, 23(7):1348-1355.
[12] 苗锡奎,朱枫,郝颖明,等.基于太阳能帆板部件的空间非合作飞行器视觉位姿测量方法[J].高技术通讯,2013,23(4):400-406. Miao X K, Zhu F, Hao Y M, et al. Vision pose measurement for non-cooperative space vehicles based on solar panel component[J]. High Technology Letters, 2013, 23(4):400-406.
[13] 陈维山,赵杰.机电系统计算机控制[M].哈尔滨:哈尔滨工业大学出版社,1999:271-278. Chen W S, Zhao J. Computer control of mechatronical system[M]. Harbin:Harbin Institute of Technology Press, 1999:271-278.