李东方, 李科伟, 邓宏彬, 潘振华, 危怡然, 王超. 基于人工势场与IB-LBM的机器蛇水中2D避障控制算法[J]. 机器人, 2018, 40(3): 346-359.DOI: 10.13973/j.cnki.robot.170421.
LI Dongfang, LI Kewei, DENG Hongbin, PAN Zhenhua, WEI Yiran, WANG Chao. The 2D Aquatic Obstacle Avoidance Control Algorithm of the Snake-LikeRobot Based on Artificial Potential Field and IB-LBM. ROBOT, 2018, 40(3): 346-359. DOI: 10.13973/j.cnki.robot.170421.
Abstract:To improve the underwater adaptability of the multi-DOF (degree of freedom) snake-like robot with high redundancy,a 2D aquatic intelligent obstacle avoidance algorithm based on artificial potential field and IB-IBM (immersed boundary method-lattice Boltzmann method) is proposed.Firstly,the lattice Boltzmann method is used to describe 2D aquatic obstacle model and construct the unified form.Then,by applying immersed boundary method and combining the existing snake curve motion equation,the 2D aquatic obstacle avoidance model is deduced under the attraction and repulsion action of artificial potential field.Afterwards,the obstacle avoidance efficiency and safety of the snake-like robot are studied under different conditions,including changing obstacle distances,swing amplitude and swing frequency of the snake-like robot, the repulsive gains of obstacle points,the Reynolds number,the attractive gains of target points as well as other important parameters.Finally,the optimal values of every parameter are obtained by several simulations.The simulation results prove that the algorithm enables the snake-like robot to avoid the static obstacles in complex underwater environment and reach its destination swiftly,safely and efficiently when the parameters are optimal.The method can not only fully study the fluid structure coupling characteristics of the underwater snake-like robot and achieve the real-time obstacle avoidance effect,but also generate the optimal path by using the known environmental information.
[1] 李一平,李硕,张艾群. 自主/遥控水下机器人研究现状[J]. 工程研究,2016,8(2):217-222.Li Y P, Li S, Zhang A Q. Research status of automatic & remotely operated vehicle[J]. Journal of Engineering Studies, 2016, 8(2):217-222.
[2] 祁若龙,周维佳,王铁军. 一种基于遗传算法的空间机械臂避障轨迹规划方法[J]. 机器人,2014,36(3):263-270.Qi R L, Zhou W J, Wang T J. An obstacle avoidance trajectory planning scheme for space manipulators based on genetic algorithm[J]. Robot, 2014, 36(3):263-270.
[3] 李立,王明辉,李斌,等.蛇形机器人水下3D运动建模与仿真[J]. 机器人,2015,37((3):336-342.Li L, Wang M H, Li B, et al. Modeling and simulation of snake robot in 3D underwater locomotion[J]. Robot, 2015, 37(3):336-342.
[4] 卢振利, 李斌. 蛇形机器人蜿蜒游动性能动力学仿真分析[J]. 机器人,2015,37(6):748-753.Lu Z L, Li B. Dynamics simulation analysis on serpentine swimming performance of a snake-like robot[J]. Robot, 2015, 37(6):748-753.
[5] Endo G, Togawa K, Hirose S. Study on self-contained and terrain adaptive active cord mechanism[C]//IEEE International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 1999:1399-1405.
[6] Dijkstra E W. A note on two problems in connexion with graphs[J]. Numerische Mathematik, 1959, 1(1):269-271.
[7] Hart P E, Nilsson N J, Raphael B. A formal basis for the heuristic determination of minimum cost paths[J]. IEEE Transactions on Systems Science and Cybernetics, 1968, 4(2):100-107.
[8] Howden W E. Solution plans and interactive problem solving[J]. Computers and Graphics, 1975, 1(1):21-26.
[9] 顾冬雷,李晓格,王硕.移动机器人路径规划方法[J]. 机器人技术与应用,2014(1):28-30.Gu D L, Li X G, Wang S. Route planing approach of mobile robot[J]. Robot Technique and Application, 2014(1):28-30.
[10] Brooks R A, Lozanol-Peren T. A subdivision algorithm in configuration space for findpath with rotation[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1985, 15(2):224-233.
[11] Lozano-Perez T, Wesley M A. An algorithm for planning collision-free paths among polyhedral obstacles[J]. Communications of the ACM, 1979, 22(10):560-570.
[12] Kirkpateick S. Optimization by simulated annealing:Quantitative studies[J]. Journal of Statistical Physics, 1984, 34(5/6):975-986.
[13] Gowda I G, Kirkpatrick D G, Lee D T, et al. Dynamic Voronoi diagrams[J]. IEEE Transactions on Information Theory, 1983, 29(5):724-731.
[14] Takahashi O, Schilling R J. Motion planning in a plane using generalized Voronoi diagrams[J]. IEEE Transactions on Robotics and Automation, 1989, 5(2):143-150.
[15] Holland J H, Reitman J S. Cognitive systems based on adaptive algorithms[J]. Pattern-Directed Inference Systems, 1978, 63:313-329.
[16] Dorigo M, Maniezzo V, Colirni A. Ant system:Optimization by a colony of cooperating agents[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics, 1996, 26(1):29-41.
[17] Kennedy J, Eberhart R. Particle swarm optimization[C]//IEEE International Conference on Neural Networks. Piscataway, USA:IEEE, 1995:1942-1948.
[18] Eberhart R, Kennedy J. A new optimizer using particle swarm theory[C]//IEEE/MHS Sixth International Symposium on Micro Machine and Human Science. Piscataway, USA:IEEE, 1995:39-43.
[19] Kuffner J J, LaValle S M. RRT-connect:An efficient approach to single-query path planning[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2000:24-28.
[20] Tao J, Shuang L, Jie Y, et al. Rapidly exploring random tree algorithm-based path planning for robot-aided optical manipulation of biological cells[J]. IEEE Transactions on Automation Science and Engineering, 2014, 11(3):649-657.
[21] Khatib O. Real-time obstacle avoidance for manipulators and mobile robots[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 1985:25-28.
[22] 叶炜垚,王春香,杨明.基于虚拟障碍物的移动机器人路径规划方法[J]. 机器人,2011,33(3):273-278, 286.Ye W Y, Wang C X, Yang M. Virtual obstacles rased path planning for mobile robots[J].Robot, 2011, 33(3):273-278, 286.
[23] Guo Z L, Shi B C, Wang N C. Lattice BGK model for incompressible Navier-Stokes equation[J]. Journal of Computational Physics, 2000, 165(1):288-306.
[24] Chen S Y, Chen H D, Martinez D, et al. Lattice Boltzmannmodel for simulation of magnetohydrodynamics[J]. Physical Review Letters, 1991, 67(27):3776-3779.
[25] Higuera F J, Jimenez J. Boltzmann approach to lattice gas simulations[J]. Europhysics Letters, 1989, 9(7):663-668.
[26] 吴雷,张勇豪,李志辉. Boltzmann方程碰撞积分建模与稀薄空气动力学应用研究[J].中国科学:物理学力学天文学,2017,47(7):28-45.Wu L, Zhang Y H, Li Z H. Studies of Boltzmann collision integral modeling and application of rare gas dynamics[J]. Scientia Sinica:Physica, Mechanica & Astronomica, 2017, 47(7):28-45.
[27] 许爱国,张广财,李英骏,等.非平衡与多相复杂系统模拟研究——Lattice Boltzmann动理学理论与应用[J].物理学进展,2014,34(3):136-167.Xu A G, Zhang G C, Li Y J, et al. Modeling and simulation of nonequilibrium and multiphase complex systems-Lattice Boltzmann kinetic theory and application[J]. Progress in Physics, 2014, 34(3):136-167.
[28] Xu Y Q, Tian F B, Deng Y L. An efficient red blood cell model in the frame of IB-LBM and its application[J]. International Journal of Biomathematics, 2013, 6(1):No.12500611.
[29] Tian F B, Luo H, Zhu L, et al. An efficient immersed boundary-lattice Boltzmann method for the hydrodynamic interaction of elastic filaments[J]. Journal of Computational Physics, 2011, 230(19):7266-7283.
[30] Guo Z L, Zheng C G, Shi B C. Discrete lattice effects on the forcing term in the lattice Boltzmann method[J]. Physical Review E:Statistical, Nonlinear, and Soft Matter Physics, 2002, 65(4):046308-1-046308-6.
[31] Wei Q, Xu Y Q, Tang X Y, et al. An IB-LBM study of continuous cell sorting in deterministic lateral displacement arrays[J]. Acta Mechanica Sinica, 2016, 32(6):1023-1030.
[32] Xu Y Q, Xiao Y T, Tian F B, et al. IB-LBM simulation of the haemocyte dynamics in a stenotic capillary[J]. Computer Methods in Biomechanics and Biomedical Engineering, 2014, 17(9):978-985.
[33] 苑宗敬,姬兴,陈刚.波动翼非定常流场IB-LBM数值研究[J]. 气体物理,2017,2(1):39-47.Yuan Z J, Ji X, Chen G. Numerical simulation of unsteady flow past biomimetic wing with IB-LBM[J]. Physics of Gases, 2017, 2(1):39-47.
[34] Peskin C S. Flow patterns around heart valves:A numerical method[J]. Journal of Computational Physics, 1972, 10(2):252-271.
[35] Liu H, Wassersug R, Kawachi K. A computational fluid dynamics study of tadpole swimming[J]. The Journal of Experimental Biology, 1996, 199(6):1245-1260.
[36] 王文全,张国威,闫妍. 刚体-流体耦合运动的浸入边界法研究[J]. 北京理工大学学报,2017,37(2):151-156.Wang W Q, Zhang G W, Yan Y. Numerical simulation of rigid body and fluid coupling using immersed boundary method[J]. Transactions of Beijing Institute of Technology, 2017, 37(2):151-156.
[37] Lighthill M J. Note on the swimming of slender fish[J]. Journal of Fluid Mechanics, 2006, 9(2):305-317.
[38] Ma S G. Analysis of snake movement forms for realization ofsnake-like robots[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 1999:3007-3013.
[39] Yamada H, Hirose S. Study on the 3D shape of active cord mechanism[C]//IEEE International Conference on Roboticsand Automation. Piscataway, USA:IEEE, 2006:2890-2895.
[40] Hirose S, Yamana H. Snake-like robots:Machine design of biologically inspired robots[J]. IEEE Robotics and Automation Magazine, 2009, 16(1):88-98.
[41] Komura H, Yamada H, Hirose S. Development of snake-like robot ACM-R8 with large and mono-tread wheel[J]. Advanced Robotics, 2015, 29(17):1081-1094.
[42] Ohashi T, Yamada H, Hirose S. Loop forming snake-like robot ACM-R7 and its serpenoid oval control[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2010:413-418.
[43] Zhang M, Shen Y, Wang Q, et al. Dynamic artificial potential field based multi-robot formation control[C]//IEEE Instrumentation & Measurement Technology Conference. Piscataway, USA:IEEE, 2010:1530-1534.
[44] Montiel O, Sepulveda R, Orozco R U. Optimal path planning generation for mobile robots using parallel evolutionary artificial potential field[J]. Journal of Intelligent & Robotic Systems, 2015, 79(2):237-257.
[45] 潘无为,姜大鹏,庞永杰. 人工势场和虚拟结构相结合的多水下机器人编队控制[J]. 兵工学报,2017,38(2):326-334.Pan W W, Jiang D P, Pang Y J. A multi-AUV formation algorithm combining artificial potential field and virtual structure[J]. Acta Armamentarii, 2017, 38(2):326-334.
[46] Chen L, Liu C, Shi H J, et al. New robot planning algorithm based on improved artificial potential field[C]//Proceedings of 2013 Third International Conference on Instrumentation, Measurement, Computer, Communication and Control. Piscataway, USA:IEEE, 2013:228-232.
[47] Weerakoon T, Ishii K, Nassiraei A A F. Dead-lock free mobile robot navigation using modified artificial potential field[C]//Joint 7th International Conference on Soft Computing and Intelligent Systems and 15th International Symposium on Advanced Intelligent Systems. Piscataway, USA:IEEE, 2014:259-264.
[48] Chen T B, Zhang Q S. Robot motion planning based on improved artificial potential field[C]//IEEE International Conference on Computer Science and Network Technology. Piscataway, USA:IEEE, 2013:1208-1211.
[49] 张力,及春宁,邢国源. 低雷诺数条件下并列三圆柱绕流的尾流模式和水动力系数研究[J]. 水动力学研究与进展,2017,32(3):263-272.Zhang L, Ji C N, Xing G Y. Investigation on near-wake patternsand hydrodynamic coefficients of flow around three side-by-side cylinders with a low Reynolds number[J]. Chinese Journal of Hydrodynamics, 2017, 32(3):263-272.