Improved Integrated Probabilistic Data Association Algorithm Based on Amplitude Information
LI Wei1,2, LI Yiping1,2, FENG Xisheng1
1. State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China
In order to further improve the estimation performance of the PDA (probabilistic data association) algorithm by using AI (amplitude information), an improved IPDA (integrated PDA) algorithm based on AI is proposed, in which the target existence problem in tracking process is considered.The likelihood ratio of amplitude is introduced to compute the probability of target existence and the association probability, which can improve the tracking performance of IPDA algorithm and the rapidity of judging existence for targets, and reduce probability of tracking loss.Finally, simulation results prove the effectiveness of the proposed algorithm.
[1] Oussalah M, de Schutter J.Hybrid fuzzy probabilistic data association filter and joint probabilistic data association filter[J].Information Sciences, 2002, 142(1-4): 195-226. [2] Li L Q, Ji H B, Gao X B.Maximum entropy fuzzy clustering with application to real-time target tracking[J].Signal Processing, 2006, 86(11): 3432-3447. [3] 于洋,司冠楠,宋建辉,等.基于概率假设密度平滑器的低检测概率下多目标跟踪 [J].信息与控制,2014,43(4): 435-439.Yu Y, Si G N, Song J H, et al.Multi-target tracking under low detection probability based on probability hypothesis density smoother[J].Information and Control, 2014, 43(4), 435-439.[4] Zhou X Z, Xie L, Huang Q, et al.Tennis ball tracking using a two-layered data association approach[J].IEEE Transactions on Multimedia, 2015, 17(2): 145-156. [5] 马璐,王刚.多目标跟踪中基于特征辅助的概率数据关联算法 [J].现代电子技术,2012,35(4): 18-21,24.Ma L, Wang G.Algorithm base on feature assit for probability data association in multi-target tracking[J].Modern Electronics Technique, 2012, 35(4): 18-21,24.[6] 向融,杨永胜.基于 CKF 的特征辅助数据关联多目标跟踪 [J].计算机仿真,2014,31(8):282-287,325.Xiang R, Yang Y S.Multiple target tracking based on CKF with feature aided data association[J].Computer Simulation, 2014, 31(8): 282-287,325.[7] Kameda H, Tsujimichi S, Kosuge Y.Target tracking under dense environments using range rate measurements[C]//37th SICE Annual Conference.Piscataway, USA: IEEE, 1998: 927-932.[8] Lerro D, Bar-Shalom Y.Automated tracking with target amplitude information[C]//American Control Conference.Piscataway, USA: IEEE, 1990: 2875-2880.[9] Lerro D, Bar-Shalom Y.Interacting multiple model tracking with target amplitude feature[J].IEEE Transactions on Aerospace and Electronic Systems, 1993, 29(2): 494-509. [10] Kirubarajan T, Bar-Shalom Y.Low observable target motion analysis using amplitude information[J].IEEE Transactions on Aerospace and Electronic Systems, 1996, 32(4): 1367-1384. [11] 章飞,周杏鹏,陈小惠.基于幅值信息的联合概率数据关联粒子滤波算法 [J].信息工程与电子技术,2011,33(2):453-457.Zhang F, Zhou X P, Chen X H, et al.Joint probabilistic data association particle filter algorithm based on amplitude information title[J].Systems Engineering and Electronics, 2011, 33(2): 453-457.[12] Musicki D, Evans R, Stankovic S.Integrated probabilistic data association[J].IEEE Transactions on Automatic Control, 1994, 39(6): 1237-1240. [13] Musicki D, Suvorova S.Tracking in clutter using IMM-IPDA-based algorithms[J].IEEE Transactions on Aerospace and Electronic Systems, 2008, 44(1): 111-126. [14] 殷业飞,黄树彩,陈治湘.基于 LMfr-IPDA 的有限传感器分辨率多目标跟踪 [J].控制与决策,2010,25(6): 911-915.Yin Y F, Huang S C, Chen Z X.Finite resolution multitarget tracking based on LMfr-IPDA[J].Control and Decision, 2010, 25(6): 911-915.[15] 何友,修建娟,张晶炜,等.雷达数据处理及应用 [M].北京: 电子工业出版社,2006.He Y, Xiu J J, Zhang J W, et al.Radar data processing with applications[M].Beijing: Publishing House of Electronics Industry, 2006.[16] 杨万海.多传感器数据融合及其应用 [M].西安: 西安电子科技大学出版社,2004.Yang W H.Multi-sensor data fusion and applications[M].Xi'an: Xidian University Publishing House, 2004.