With the growth of physical human-robot interface, the security of human-robot interface has attracted attention recently. Mechanically musculoskeletal variable-stiffness mechanisms applied to robot joints can solve the problems about human-robot security and unknown environmental adaptability by imitating the variable stiffness property of skeletal muscle. Many mechanism designs of variable stiffness joints of overseas robots are studied. The nonlinear variable stiffness principle of mechanically musculoskeletal variable-stiffness mechanisms is summarized. Mechanism design methods are classified into five categories, and their advantages and disadvantages are analyzed. The analysis results might provide references for designs of highly-safe and well-adapted robots.
[1] van Ham R, Sugar T G, Vanderborght B, et al. Compliant actuator designs: Review of actuators with passive adjustable compliance/controllable stiffness for robotic applications[J]. IEEE Robotics and Automation Magazine, 2009, 16(3): 81-94. [2] 余慧杰.具有生理学特性的高精度人体肌肉疲劳建模及 其在手臂屈伸运动中的应用研究[D].上海:复旦大学,2008. Yu H J. Development of a high-fidelity human muscle fatigue model with physiological characteristics for use in the modeling of the elbow flexor-extensor motion[D]. Shanghai: Fudan University, 2008.[3] 臧克江.编织型气动人工肌肉工作机理及设计理论研究[D].哈尔滨:东北林业大学,2012. Zang K J. Mechanism and design theory research of braided type pneumatic artificial muscle[D]. Harbin: Northeast Forestry University, 2012.[4] Tagliamonte N L, Sergi F, Accoto D, et al. Double actuation architectures for rendering variable impedance in compliant robots: A review[J]. Mechatronics, 2012, 22(8): 1187-1203. [5] Vanderborght B, Albu-Schaeffer A, Bicchi A, et al. Variable impedance actuators: A review[J]. Robotics and Autonomous Systems, 2013, 61(12): 1601-1614. [6] 祁宏钟,雷雨成,冯晋祥.变刚度螺旋弹簧的设计方法 和精确建模初探[J].中国机械工程,2002,13(13):1100-1102. Qi H Z, Lei Y C, Feng J X. Preliminary study on design method of nonlinear spring and precise modeling[J]. China Mechanical Engineering, 2002, 13(13): 1100-1102.[7] Osada M, Ito N, Nakanishi Y, et al. Realization of flexible motion by musculoskeletal humanoid “Kojiro” with add-on nonlinear spring units[C]//IEEE/RAS International Conference on Humanoid Robots. Piscataway, USA: IEEE, 2010: 174-179.[8] Nakanishi Y, Ito N, Shirai T, et al. Design of powerful and flexible musculoskeletal arm by using nonlinear spring unit and electromagnetic clutch opening mechanism[C]//IEEE/RAS International Conference on Humanoid Robots. Piscataway, USA: IEEE, 2011: 377-382.[9] Friedl W, Chalon M, Reinecke J, et, al. FAS a flexible antagonistic spring element for a high performance over actuated hand[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA: IEEE, 2011: 1366-1372.[10] van Ham R, Vanderborght B, van Damme M, et al. MACCEPA, the mechanically adjustable compliance and controllable equilibrium position actuator: Design and implementation in a biped robot[J]. Robotics and Autonomous Systems, 2007, 55(10): 761-768. [11] Huang T H, Huang H P, Kuan J Y. Mechanism and control of continuous-state coupled elastic actuation[J]. Journal of Intelligent and Robotic Systems, 2014, 74(3/4): 571-587.[12] Yeo S H, Yang G, Lim W B. Design and analysis of cabledriven manipulators with variable stiffness[J]. Mechanism and Machine Theory, 2013, 69: 230-244.[13] Jafari A, Tsagarakis N G, Caldwell D G. A novel intrinsically energy efficient actuator with adjustable stiffness (AwAS)[J]. IEEE/ASME Transactions on Mechatronics, 2013, 18(1): 355-365. [14] Kim B S, Song J B. Design and control of a variable stiffness actuator based on adjustable moment arm[J]. IEEE Transactions on Robotics, 2012, 28(5): 1145-1151. [15] Visser L C, Carloni R, Stramigioli S. Energy-efficient variable stiffness actuators[J]. IEEE Transactions on Robotics, 2011, 27(5): 865-875. [16] Tsagarakis N G, Sardellitti I, Caldwell D G. A new variable stiffness actuator (CompAct-VSA): Design and modelling[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA: IEEE, 2011: 378-383.[17] Groothuis S S, Rusticelli G, Zucchelli A, et al. The variable stiffness actuator vsaUT-II: Mechanical design, modeling, and identification[J]. IEEE/ASME Transactions on Mechatronics, 2014, 19(2): 589-597. [18] Fumagalli M, Barrett E, Stramigioli S, et al. The mVSA-UT: A miniaturized differential mechanism for a continuous rotational variable stiffness actuator[C]//IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics. Piscataway, USA: IEEE, 2012: 1943-1948.[19] Jafari A, Tsagarakis N G, Sardellitti I, et al. A new actuator with adjustable stiffness based on a variable ratio lever mechanism[J]. IEEE/ASME Transactions on Mechatronics, 2014, 19(1): 55-63. [20] Wang R J, Huang H P. Active variable stiffness elastic actuator: Design and application for safe physical human-robot interaction[C]//IEEE International Conference on Robotics and Biomimetics. Piscataway, USA: IEEE, 2010: 1417-1422.[21] Choi J, Hong S, Lee W, et al. A robot joint with variable stiffness using leaf springs[J]. IEEE Transactions on Robotics, 2011, 27(2): 229-238. [22] Migliore S A, Brown E A, DeWeerth S P. Novel nonlinear elastic actuators for passively controlling robotic joint compliance[J]. Journal of Mechanical Design, 2007, 129(4): 406-412. [23] Vanderborght B, Tsagarakis N G, Ham R V, et al. MACCEPA 2.0: Compliant actuator used for energy efficient hopping robot Chobino1D[J]. Autonomous Robots, 2011, 31(1): 55-65. [24] Nam K H, Kim B S, Song J B. Compliant actuation of paralleltype variable stiffness actuator based on antagonistic actuation[J]. Journal of Mechanical Science and Technology, 2010, 24(11): 2315-2321. [25] Osada M, Ito N, Nakanishi Y, et al. Stiffness readout in musculo-skeletal humanoid robot by using rotary potentiometer[C]//IEEE Sensors Conference. Piscataway, USA: IEEE, 2010: 2329-2333.[26] Nordin M, Frankel V H. Basic biomechanics of the musculoskeletal system[M]. Philadelphia, USA: Lippincott Williams & Wilkins, 2011.[27] 徐红旗,张欣,冉令华,等.应用等张模式测定人体单关 节肌群功率发展与保持能力的方法学研究[J].人类工效 学,2011,17(4):13-18. Xu H Q, Zhang X, Ran L H, et al. Methodology research on evaluating the developmental and retentive capacity level of human single-joint muscular power in mode of isotonic test[J]. Chinese Journal of Ergonomics, 2011, 17(4): 13-18.[28] Abul-Haj C, Hogan N. An emulator system for developing improved elbow-prosthesis designs[J]. IEEE Transactions on Biomedical Engineering, 1987, 34(9): 724-737.[29] Zhang L Q, Nuber G, Butler J, et al. In vivo human knee joint dynamic properties as functions of muscle contraction and joint position[J]. Journal of Biomechanics, 1998, 31(1): 71-7