Abstract:For the commonly used repetitive trajectory in motion systems, the iterative learning control (ILC) method is still quite sensitive to non-repetitive disturbance, although it can eliminate repetitive errors effectively via iterations. In order to achieve precision motion with non-repetitive disturbance for piezoelectric micro-positioning stages, a control strategy integrating ILC with disturbance observer (DOB) is proposed. Firstly, the hysteresis nonlinearity is treated as repetitive input disturbance during the iterative process to avoid complex hysteresis modeling. Then, to ensure the stability of the proposed strategy, the convergence condition is deduced and the suppression of non-repetitive disturbance is analyzed to minimize convergence error. Finally, comparative experiments are performed on a piezoelectric micro-positioning stage. Results show that the proposed strategy can compensate hysteresis nonlinearity effectively without hysteresis modeling. The root-mean-square values of tracking errors are within 0.4% of the stroke for tracking of 5Hz,10Hz and 20Hz triangular waves under ideal environment. While for the environment with non-repetitive disturbance, the proposed strategy can achieve root-mean-square value of tracking error at 10.24nm, that is reduced by 98.73%, 98.67% and 88.24% respectively compared with the built-in controller, the stand-alone feedback controller and ILC. Besides, the proposed control strategy can accelerate the convergence speed of ILC. Experimental results validate the effectiveness of the proposed strategy sufficiently, and the precision motion of the piezoelectric micro-positioning stage can be realized.
[1] 李杨民,汤晖,徐青松,等.面向生物医学应用的微操作机器人技术发展态势[J].机械工程学报,2011,47(23):1-13.Li Y M, Tang H, Xu Q S, et al. Development status of micromanipulator technology for biomedical applications[J]. Journal of Mechanism Engineering, 2011, 47(23):1-13.
[2] 张勤,杜启亮,吴志斌.面向显微操作的混合驱动式微小型机器人的开发与应用[J].机器人,2012,34(6):737-744.Zhang Q, Du Q L, Wu Z B. Development and application of a hybrid-drive miniature-robot for micromanipulation[J]. Robot, 2012, 34(6):737-744.
[3] Gu G Y, Zhu L M, Su C Y, et al. Modeling and control of piezo-actuated nanopositioning stages:A survey[J]. IEEE Transactions on Automation Science and Engineering, 2016, 13(1):313-332.
[4] 崔玉国,阮超,马剑强,等.2-DOF并联柔性结构微动平台的新构型及尺寸优化[J].机器人,2016,38(3):352-359.Cui Y G, Ruan C, Ma J Q, et al. New configuration and size optimization of a 2-DOF parallel micro-positioning stage with flexible structure[J]. Robot, 2016, 38(3):352-359.
[5] Yong Y K, Moheimani S O R, Kenton B J, et al. Invited review article:High-speed flexure-guided nanopositioning:Mechanical design and control issues[J]. Review of Scientific Instruments, 2012, 83(12):No.121101.
[6] Macki J W, Nistri P, Zecca P, et al. Mathematical models for hysteresis[J]. SIAM Review, 1993, 35(1):94-123.
[7] Gu G Y, Zhu L M, Su C Y. Modeling and compensation of asymmetric hysteresis nonlinearity for piezoceramic actuators with a modified Prandtl-Ishlinskii model[J]. IEEE Transactions on Industrial Electronics, 2014, 61(3):1583-1595.
[8] Ismail M, Ikhouane F, Rodellar J, et al. The hysteresis Bounc-Wen model, a survey[J]. Archives of Computational Methods in Engineering, 2009, 16(2):161-188.
[9] Zhang Y, Xu Q. Adaptive sliding mode control with parameter estimation and Kalman filter for precision motion control of a piezo-driven microgripper[J]. IEEE Transactions on Control Systems Technology, 2017, 25(2):728-735.
[10] Eielsen A A, Vagia M, Gravdahl J T, et al. Damping and tracking control schemes for nanopositioning[J]. IEEE/ASME Transactions on Mechatronics, 2014, 19(2):432-444.
[11] Findeisen R, Grover M A, Wagner C, et al. Control on a molecular scale:A perspective[C]//American Control Conference. Piscataway, USA:IEEE, 2016:3069-3082.
[12] Wu Y, Zou Q, Su C. A current cycle feedback iterative learning control approach for AFM imaging[J]. IEEE Transactions on Nanotechnology, 2009, 8(4):515-527.
[13] Kim K S, Zou Q. A modeling-free inversion-based iterative feedforward control for precision output tracking of linear time-invariant systems[J]. IEEE/ASME Transactions on Mechatronics, 2013, 18(6):1767-1777.
[14] Bristow D A, Tharayil M, Alleyne A G. A survey of iterative learning control[J]. IEEE Control Systems Magazine, 2006, 26(3):96-114.
[15] Wang Y, Gao F, Doyle F J. Survey on iterative learning control, repetitive control, and run-to-run control[J]. Journal of Process Control, 2009, 19(10):1589-1600.
[16] Helfrich B E, Lee C, Bristow D A, et al. Combined H_∞-feedback control and iterative learning control design with application to nanopositioning systems[J]. IEEE Transactions on Control Systems Technology, 2010, 18(2):336-351.
[17] Merry R, van de Molengraft R, Steinbuch M. Iterative learning control with wavelet filtering[J]. International Journal of Robust and Nonlinear Control, 2008, 18(10):1052-1071.
[18] Lin C Y, Sun L, Tomizuka M. Robust principal component analysis for iterative learning control of precision motion systems with non-repetitive disturbances[C]//American Control Conference. Pisacataway, USA:IEEE, 2015:2819-2824.
[19] Li C X, Gu G Y, Yang M J, et al. High-speed tracking of a nanopositioning stage using modified repetitive control[J]. IEEE Transactions on Automation Science and Engineering, 2017, 14(3):1467-1477.
[20] Chen W H, Yang J, Guo L, et al. Disturbance-observer-based control and related methods-An overview[J]. IEEE Transactions on Industrial Electronics, 2016, 63(2):1083-1095.
[21] Sariyildiz E, Ohnishi K. Stability and robustness of disturbance-observer-based motion control systems[J]. IEEE Transactions on Industrial Electronics, 2015, 62(1):414-422.
[22] Tomizuka M. Zero phase error tracking algorithm for digital control[J]. Journal of Dynamic Systems, Measurement, and Control, 1987, 109(1):65-68.
[23] Butterworth J A, Pao L Y, Abramovitch D Y. Analysis and comparison of three discrete-time feedforward model-inverse control techniques for nonminimum-phase systems[J]. Mechatronics, 2012, 22(5):577-587.
[24] Leang K K, Devasia S. Feedback-linearized inverse feedforward for creep, hysteresis, and vibration compensation in AFM piezoactuators[J]. IEEE Transactions on Control Systems Technology, 2007, 15(5):927-935.