Control of the Exoskeleton's Swing Leg Based on the Human-MachinePosture Error at Ankle Joint
JIA Shan1, WANG Xingsong1, LU Xinliang1, XU Jigang1, HAN Yali2
1. School of Mechanical Engineering, Southeast University, Nanjing 211189, China;
2. School of Mechanical Engineering, Nanjing Institute of Technology, Nanjing 211167, China
贾山, 王兴松, 路新亮, 徐继刚, 韩亚丽. 基于踝关节处人机位姿误差的外骨骼摆动腿控制[J]. 机器人, 2015, 37(4): 403-414.DOI: 10.13973/j.cnki.robot.2015.0403.
JIA Shan, WANG Xingsong, LU Xinliang, XU Jigang, HAN Yali. Control of the Exoskeleton's Swing Leg Based on the Human-MachinePosture Error at Ankle Joint. ROBOT, 2015, 37(4): 403-414. DOI: 10.13973/j.cnki.robot.2015.0403.
An overall motion control strategy of the exoskeleton is proposed, and the motion planning and PD (proportional-derivative) control of the exoskeleton's swing leg are introduced especially. As the basis of the motion planning of exoskeleton's swing leg, the detection of human-machine posture error at ankle joint can be achieved by banding the exoskeleton and the wearer with each other at waist and ankle, thus the limitation on wearer's movement and the complexity of control system can be reduced. Correctness of the exoskeleton dynamical model which is the basis for designing the swing leg PD controller is verified with Adams and Matlab. Kalman filter adopted to predict the movement of the wearer's swing leg can improve the control accuracy under the limited sampling frequency. The experiment results indicate that this method can efficiently identify the movement intention of wearer's swing leg, and drive the exoskeleton's hip and knee joints to precisely track the wearer's ankle joint trajectory. The method can be used to control the exoskeleton's swing leg.
[1] Sakurai T, Sankai Y. Development of motion instruction system with interactive robot suit HAL[C]//IEEE International Conference on Robotics and Biomimetics. Piscataway, USA: IEEE, 2009: 1141-1147.[2] Kawabata T, Satoh H, Sankai Y. Working posture control of robot suit HAL for reducing structural stress[C]//IEEE International Conference on Robotics and Biomimetics. Piscataway, USA: IEEE, 2009: 2013-2018.[3] Kawamoto H, Taal S, Niniss H, et al. Voluntary motion support control of robot suit HAL triggered by bioelectrical signal for hemiplegia[C]//32nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Piscataway, USA: IEEE, 2010: 462-466.[4] Kong K, Jeon D. Design and control of an exoskeleton for the elderly and patients[J]. IEEE/ASME Transactions on Mechatronics, 2006, 11(4): 428-432. [5] Chen J Z, Liao W H. Design and control of a magnetorheological actuator for leg exoskeleton[C]//IEEE International Conference on Robotics and Biomimetics. Piscataway, USA: IEEE, 2007: 1388-1393.[6] Pratt J E, Krupp B T, Morse C J, et al. The RoboKnee: An exoskeleton for enhancing strength and endurance during walking[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA: IEEE, 2004: 2430-2435.[7] Kazerooni H, Racine J L, Huang L H, et al. On the control of the Berkeley lower extremity exoskeleton[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA: IEEE, 2005: 4353-4360.[8] Kazerooni H, Steger R, Huang L H. Hybrid control of the Berkeley lower extremity exoskeleton (BLEEX)[J]. International Journal of Robotics Research, 2006, 25(5/6): 561-573.[9] Steger R, Kim S H, Kazerooni H. Control scheme and networked control architecture for the Berkeley lower extremity exoskeleton (BLEEX)[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA: IEEE, 2006: 3469-3476.[10] Cao H, Ling Z Y, Zhu J, et al. Design frame of a leg exoskeleton for load-carrying augmentation[C]//IEEE International Conference on Robotics and Biomimetics. Piscataway, USA: IEEE, 2009: 426-431.[11] 曹恒,孟宪伟,凌正阳,等.两足外骨骼机器人足底压力测量系统[J].传感技术学报,2010,23(3):326-330. Cao H, Meng X W, Ling Z Y, et al. Measurement system for plantar pressure of biped exoskeleton robot [J]. Chinese Journal of Sensors and Actuators, 2010, 23(3): 326-330.[12] 孙健,余永,葛运建,等.基于接触力信息的可穿戴型下肢助力机器人传感系统研究[J].中国科学技术大学学报,2008,38(12):1432-1438. Sun J, Yu Y, Ge Y J, et al. Research on multi-sensors perceptual system of wearable power assist leg based on interaction force signal and joint angle signal[J]. Journal of University of Science and Technology of China, 2008, 38(12): 1432-1438.[13] 赵丽娜,刘作军,苟斌,等.基于隐马尔可夫模型的动力型下肢假肢步态预识别[J].机器人,2014,36(3):337-341. Zhao L N, Liu Z J, Gou B, et al. Gait pre-recognition of dynamic lower limb prosthesis based on hidden Markov model[J]. Robot, 2014, 36(3): 337-341.[14] 潘礼正,宋爱国,徐国政,等.上肢康复机器人实时安全控制[J].机器人,2012,34(2):197-203,210. Pan L Z, Song A G, Xu G Z, et al. Real-time safety control of upper-limb rehabilitation robot [J]. Robot, 2012, 34(2): 197-203,210.[15] Aguirre-Ollinger G, Colgate J E, Peshkin M A, et al. Active-impedance control of a lower-limb assistive exoskeleton[C]//IEEE 10th International Conference on Rehabilitation Robotics. Piscataway, USA: IEEE, 2007: 188-195.[16] 文忠,钱晋武,沈林勇,等.基于阻抗控制的步行康复训练机器人的轨迹自适应[J].机器人,2011,33(2):142-149. Wen Z, Qian J W, Shen L Y, et al. Trajectory adaptation for impedance control based walking rehabilitation training robot[J]. Robot, 2011, 33(2): 142-149.[17] Yu W, Rosen J, Li X O. PID admittance control for an upper limb exoskeleton[C]//American Control Conference. Piscataway, USA: IEEE, 2011: 1124-1129.[18] Vaughan C L, Davis B L, O'Connor J C. Dynamics of human gait[M]. Champaign, USA: Human Kinetics Publishers, 1999: 16-20.[19] Han Y L, Wang X S, Fu C Q, et al. The study on human walking gait analysis system for the design of walking power-assisted robot[C]//IEEE International Conference on Mechatronics and Automation. Piscataway, USA: IEEE, 2009: 3607-3612.[20] 贾山,韩亚丽,路新亮,等.基于人体特殊步态分析的下肢外骨骼机构设计[J].机器人,2014,36(4):392-401,410. Jia S, Han Y L, Lu X L, et al. Design of lower extremity exoskeleton based on analysis on special human gaits[J]. Robot, 2014, 36(4): 392-401,410.[21] Kanjanapas K, Tomizuka M. 7 degrees of freedom passive exoskeleton for human gait analysis: Human joint motion sensing and torque estimation during walking[C]//6th IFAC Symposium on Mechatronic Systems. Laxenburg, Austria: IFAC Secretariat, 2013: 285-292.[22] Kyoungchul K, Tomizuka M. A gait monitoring system based on air pressure sensors embedded in a shoe[J]. IEEE/ASME Transactions on Mechatronics, 2009, 14(3): 358-370. [23] 杨东超,汪劲松,刘莉,等.基于ZMP的拟人机器人步态规划[J].机器人,2001,23(6):504-508. Yang D C, Wang J S, Liu L, et al. Gait planning of humanoid robot based on ZMP [J]. Robot, 2001, 23(6): 504-508.[24] 付根平,杨宜民,陈建平,等.基于ZMP误差校正的仿人机器人步行控制[J].机器人,2013,35(1):40-44. Fu G P, Yang Y M, Chen J P, et al. Walking control for humanoid robot based on ZMP error correction[J]. Robot, 2013, 35(1): 40-44.[25] Canudas de Wit C, Olsson H, Astrom K J, et al. A new model for control of systems with friction[J]. IEEE Transactions on Automatic Control, 1995, 40(3): 419-425.