Model and Experiments for Compound Control of a Piezoelectric Micro-gripper
ZHENG Junhui1,2, CUI Yuguo1,2, LOU Junqiang1,2, XUE Fei1,2
1. The Faculty of Mechanical Engineering and Mechanics, Ningbo University, Ningbo 315211, China;
2. Zhejiang Provincial Key Lab of Part Rolling Technology, Ningbo 315211, China
郑军辉, 崔玉国, 娄军强, 薛飞. 压电微夹钳的复合控制模型及实验[J]. 机器人, 2015, 37(3): 257-263.DOI: 10.13973/j.cnki.robot.2015.0257.
ZHENG Junhui, CUI Yuguo, LOU Junqiang, XUE Fei. Model and Experiments for Compound Control of a Piezoelectric Micro-gripper. ROBOT, 2015, 37(3): 257-263. DOI: 10.13973/j.cnki.robot.2015.0257.
To improve the gripping performance of a piezoelectric micro-gripper, a compound control system is designed. The hysteresis model of the piezoelectric micro-gripper is presented through improving the PI (proportional-integral) model by using the dead zone operator, and the feedforward controller based on the hysteresis model is designed. Then a PID (proportional-integral-derivative) feedback controller with a parabola integral and differential forward is designed by improving the conventional PID control algorithm. Finally, a compound controller is proposed, which consists of the feedforward controller and the modified PID feedback controller. Under the compound control, the response time of the micro-gripper descends to 0.09s for a desired step signal of 5um, which is a little faster than the feedforward control, and significantly faster than the PID feedback control. Under the input of a maximum displacement of 15.2um, the steady-state error of compound control is almost zero if excluding the sensor noise. Experimental results indicate that the proposed compound control possesses better performance comparing with the feedforward control and the PID feedback control, such as faster response speed and higher steady-state accuracy.
[1] 郝永平,董福禄, 张嘉易,等.基于 MEMS 机构装配的微夹持器研究 [J].中国机械工程,2014,25(5): 596-601.Hao Y P, Dong F L, Zhang J Y, et al. Study on micro-gripper on MEMS mechanism assembly[J]. China Mechanical Engineering, 2014, 25(5): 596-601.[2] 孙立宁,陈立国,荣伟彬,等.面向微机电系统组装与封装的微操作装备关键技术 [J].机械工程学报,2008, 44(11): 13-19.Sun L N, Chen L G, Rong W B, et al. Key techniques of micromanipulation devices for MEMS assembling and packaging[J]. Journal of Mechanical Engineering, 2008, 44(11): 13-19.[3] 崔玉国,孙宝元,董维杰,等.压电陶瓷执行器迟滞与非线性成因分析 [J].光学精密工程,2003,11(3): 270-275.Cui Y G, Sun B Y, Dong W J, et al. Causes for hysteresis and nonlinearity of piezoelectric ceramic actuator[J]. Optics and Precision Engineering, 2003, 11(3): 270-275.[4] Ma Y, Zhang X, Xu M, et al. Hybrid model based on Preisach and support vector machine for novel dual-stack piezoelectric actuator[J]. Mechanical Systems and Signal Processing, 2013, 34(1): 156-172.[5] Rakotondrabe M. Classical Prandtl-Ishlinskii modeling and inverse multiplicative structure to compensate hysteresis in piezoactuators[C]//American Control Conference. Piscataway, USA: IEEE, 2012: 1646-1651.[6] Juhasz L, Maas J, Borovac B. Parameter identification and hysteresis compensation of embedded piezoelectric stack actuators[J]. Mechatronics, 2011, 21(1): 329-338.[7] Xu Q, Li Y. Dahl model-based hysteresis compensation and precise positioning control of an XY parallel micromanipulator with piezoelectric actuation[J]. Journal of Dynamic Systems, Measurement, and Control, 2010, 132(4): 041011.[8] Chen C M, Hsu Y C, Fung R F. System identification of a Scott-Russell amplifying mechanism with offset driven by a piezoelectric actuator[J]. Applied Mathematical Modelling, 2012, 36(6): 2788-2802.[9] Minase J, Lu T F, Cazzolato B, et al. A review, supported by experimental results, of voltage, charge and capacitor insertion method for driving piezoelectric actuators[J]. Precision Engineering, 2010, 34(4): 692-700.[10] 张娟,白斌,舒亚峰,等.基于改进的 PID 算法的压电柔性机械臂振动主动控制 [J].机械科学与技术,2014,33(5): 625-629. Zhang J, Bai B, Shu Y F, et al. A vibration control system of flexible manipulator based on incremental fuzzy self-tuning PID algorithm[J]. Mechanical Science and Technology for Aerospace Engineering, 2014, 33(5): 625-629.[11] Li P, Yan F, Ge C, et al. A simple fuzzy system for modelling of both rate-independent and rate-dependent hysteresis in piezoelectric actuators[J]. Mechanical Systems and Signal Processing, 2013, 36(1): 182-192.[12] 张桂林,张承进,李康.基于 PI 迟滞模型的压电驱动器自适应辨识与逆控制 [J].纳米技术与精密工程,2013,11(1): 85-89.Zhang G L, Zhang C J, Li K. Adaptive identification and inverse control of piezoelectric actuators based on PI hysteresis model[J]. Nanotechnology and Precision Engineering, 2013, 11(1): 85-89.[13] 王贞艳,张臻,周克敏,等.压电作动器的动态迟滞建模与 H∞ 鲁棒控制 [J].控制理论与应用,2014,31(1):35-41. Wang Z Y, Zhang Z, Zhou K M, et al. Dynamic hysteresis modeling and H-infinity robust control of piezoelectric actuators[J]. Control Theory & Applications, 2014, 31(1): 35-41.[14] Guo W, Liu D, Wang W. Neural network hysteresis modeling with an improved Preisach model for piezoelectric actuators[J]. Engineering Computations, 2012, 29(3): 248-259.[15] Krejci P, Kuhnen K. Inverse control of system with hysteresis and creep[J]. IEE Proceedings: Control Theory and Applications, 2001, 148(3): 185-192.[16] 王俐,饶长辉,饶学军.压电陶瓷微动台的复合控制 [J].光学精密工程,2012,20(6):1265-1271.Wang L, Rao C H, Rao X J. Feed-forward control of piezoelectric ceramic position stage[J]. Optics and Precision Engineering, 2012, 20(6): 1265-1271.[17] 陶永华,尹怡欣,葛芦生.新型 PID 控制及其应用 [M].北京:机械工业出版社,1998.Tao Y H, Yin Y X, Ge L S. The new PID control and its application[M]. Beijing: China Machine Press, 1998.[18] 曹荣,秦岚,夏含信,等.PID 控制技术在压电陶瓷精密定位过程的应用 [J].仪器仪表学报,2004,25(4):132-135.Cao R, Qin L, Xia H X, et al. The application of PID controlling technique in PZT precision positioning[J]. Chinese Journal of Scientific Instrument, 2004, 25(4): 132-135.