Stability Control for the Head of a Biomimetic Robotic Fish with Embedded Vision
SUN Feihu1, YU Junzhi1, XU De2
1. The State Key Lab of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China;
2. Research Center of Precision Sensing and Control, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
孙飞虎, 喻俊志, 徐德. 具有嵌入式视觉的仿生机器鱼头部的平稳性控制[J]. 机器人, 2015, 37(2): 188-195,203.DOI: 10.13973/j.cnki.robot.2015.0188.
SUN Feihu, YU Junzhi, XU De. Stability Control for the Head of a Biomimetic Robotic Fish with Embedded Vision. ROBOT, 2015, 37(2): 188-195,203. DOI: 10.13973/j.cnki.robot.2015.0188.
The camera is generally installed in the head of a biomimetic robotic fish with embedded vision. The issue of stability control of the head is explored to guarantee the steady acquisition of image data. Specifically, hydrodynamics of the biomimetic robotic fish is modeled based on the Newton-Euler method, which is applied to comparing the head swing status in the cases of different body models. In addition, a genetic algorithm is developed to optimize parameters for multiple moving joints, intended to minimize the swing of the robotic fish's head. Finally, experiments are conducted on a selfdesigned biomimetic robotic fish equipped with an embedded vision system. The results indicate that the swing of the head is decreased and the imaging stability and continuity are greatly improved by the stability control. However, it is inevitable that the swimming velocity decreases. This method lays the foundation for locomotion control and task execution based on embedded vision.
[1] Triantafyllou M S, Triantafyllou G S. An efficient swimming machine[J]. Scientific American, 1995, 272(3): 64-72. [2] Su Z S, Yu J Z, Tan M, et al. Implementing flexible and fast turning maneuvers of a multijoint robotic fish[J]. IEEE/ASME Transactions on Mechatronics, 2014, 19(1): 329-338. [3] Yu J Z, Su Z S, Wang M, et al. Control of yaw and pitch maneuvers of a multilink dolphin robot[J]. IEEE Transactions on Robotics, 2012, 28(2): 318-329. [4] 苏宗帅.仿生机器鱼高机动运动控制研究[D].北京:中国科学院研究生院,2012. Su Z S. Locomotion control of biomimetic robotic fish with high-maneuverability[D]. Beijing: Graduate University of Chinese Academy of Sciences, 2012.[5] 梁建宏,邹丹,王松,等.SPC-II 机器鱼平台及其自主航行实验[J].北京航空航天大学学报,2005,31(7):709-713. Liang J H, Zou D, Wang S, et al. Trial voyage of SPC-II fish robot[J]. Journal of Beijing University of Aeronautics and Astronautics, 2005, 31(7): 709-713.[6] Clapham R J, Hu H. iSplash-II: Realizing fast carangiform swimming to outperform a real fish[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA: IEEE, 2014: 1080-1086.[7] Conte J, Modarres-Sadeghi Y, Watts M N, et al. A fast-starting mechanical fish that accelerates at 40ms-2[J]. Bioinspiration & Biomimetics, 2010, 5(3): 035004.[8] Sfakiotakis M, Lane D M, Davies J B C. Review of fish swimming modes for aquatic locomotion[J]. IEEE Journal of Oceanic Engineering, 1999, 24(2): 237-252. [9] 童秉纲,庄礼贤.描述鱼类波状游动的流体力学模型及其应用[J].自然杂志,1998,20(1):1-7. Tong B G, Zhuang L X. The hydrodynamic analysis of fish propulsion performance and its morphological adaptation[J]. Chines Journal of Nature, 1998, 20(1): 1-7.[10] Hu Y H, Zhao W, Xie G M, et al. Development and target following of vision-based autonomous robotic fish[J]. Robotica, 2009, 27(7): 1075-1089. [11] Yu J Z, Wang K, Tan M, et al. Design and control of an embedded vision guided robotic fish with multiple control surfaces[J/OL]. Scientific World Journal, 2014. (2014-01-29)[2014-06-01]. http://www.hindawi.com/journals/tswj/2014/631 296/abs/.[12] Lighthill M. Note on the swimming of slender fish[J]. Journal of Fluid Mechanics, 1960, 9(2): 305-317. [13] Yu J Z, Tan M, Wang S, et al. Development of a biomimetic robotic fish and its control algorithm[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2004, 34(4): 1798-1810. [14] KhalilW, Gallot G, Boyer F. Dynamic modeling and simulation of a 3-D serial eel-like robot[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 2007, 37(6): 1259-1268. [15] Zhou C, Cao Z,Wang S, et al. The design, modelling and implementation of a miniature biomimetic robotic fish[J]. International Journal of Robotics & Automation, 2010, 25(3): 210-216.[16] 沈飞,曹志强,徐德,等.基于Kane 方法的机器海豚动力学建模及速度优化方法[J].自动化学报,2012,38(8): 1247-1256. Shen F, Cao Z Q, Xu D, et al. A dynamic model of robotic dolphin based on Kane method and its speed optimization method[J]. Acta Automatica Sinica, 2012, 38(8): 1247-1256.[17] Yu J Z, Liu L Z, Tan M. Three-dimensional dynamic modelling of robotic fish: Simulations and experiments[J]. Transactions of the Institute of Measurement and Control, 2008, 30(3/4): 239- 258.[18] Wu Z X, Yu J Z, Tan M. CPG parameter search for a biomimetic robotic fish based on particle swarm optimization[C]//IEEE International Conference on Robotics and Biomimetics. Piscataway, USA: IEEE, 2012: 563-568.