Method of Microscopic Positioning with Physical Markers
SUN Fujun1, ZHU Junhui1, YANG Feiyu1, CHEN Ruihua2, SUN Lining1,3, RU Changhai1,3
1. Jiangsu Provincial Key Laboratory of Advanced Robotics, Soochow University, Suzhou 215123, China;
2. Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China;
3. Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
In order to improve the precision and efficiency of micromanipulation, a physical coordinate system is established automatically by two different circles printed on the physical marker. The circles are recognized by Hough circle algorithm and artificial auxiliary. Then, by combining with the physical coordinate, automatic platform system and the coordinate conversion algorithm developed by ourselves, a method is proposed to automatically realize the detection of the CCD (charge coupled device) deflection angle, the scanning of microscopic image and the repeat positioning of micromanipulation under a microscope. As the experimental results show, the error of two successive positioning can be controlled in a range of 320 pix×240 pix in the center of CCD screen (640 pix×480 pix), that is a quarter of the whole screen, and the success rate can be up to 90%. The repeat positioning of the physical object will be realized precisely under the microscope, while it is only needed to affix the transparent label with two circles to the bottom of the material object, and install the relevant software and hardware.
[1] 田桂中,陈涛,王淑妍,等.生物工程中自动化显微注射技术研究进展[J].微纳电子技术,2011,48(8):536-542.Tian G Z, Chen T, Wang S Y, et al. Research progress on auto-microinjection technology in bio-engineering[J]. Micronanoelectronic Technology, 2011, 48(8): 536-542.[2] 钱驰,张少华,吴秉羲.基于精密移动平台的数字化切片技术[J].苏州大学学报:工科版,2012,32(6):34-39.Qian C, Zhang S H, Wu B X. Technology of digital slides based on the precise moving platform[J]. Journal of Suzhou University: Engineering Science Edition, 2012, 32(6): 34-39.[3] 汝长海,陈瑞华,孙伏骏,等.显微注射系统,中国:201320254357.3[P]. 2013-10-09.Ru C H, Chen R H, Sun F J, et al. Microinjection system, China: 201320254357.3[P]. 2013-10-09.[4] Liu X Y, Lu Z, Sun Y. Orientation control of biological cells under inverted microscopy[J]. IEEE/ASME Transactions on Mechatronics, 2011, 16(5): 918-924. [5] 李文屏,王正明,谢美华.多通道SAR 图像滤波的向量总 变分模型[J].红外与毫米波学报,2012,31(1):61-66. LiWP,Wang Z M, XieMH. Vectorial total variation model for multi-channel SAR image denoising[J]. Journal of Infrared and Millimeter Waves, 2012, 31(1): 61-66.[6] 蔡亮,达飞鹏.基于几何图像滤波的3D 人脸识别算法[J]. 东南大学学报:自然科学版,2012,42(5):859-863. Cai L, Da F P. 3D face recognition by applying filter based on geometry image[J]. Journal of Southeast University: Natural Science Edition, 2012, 42(5): 859-863.[7] 高珊,马艳会.基于边缘保持的SAR 图像滤波算法研究[J].液晶与显示,2013,28(2):290-294. Gao S, Ma Y H. Algorithm research of filtering for SAR images based on edges-preserving[J]. Chinese Journal of Liquid Crystals and Displays, 2013, 28(2): 290-294.[8] Yuen H K, Princen J, Illingworth J, et al. Comparative study of Hough transform methods for circle finding[J]. Image and Vision Computing, 1990, 8(1): 71-77. [9] Xu L, Oja E, Kultanen P. A new curve detection method: Randomized Hough transform (RHT) [J]. Pattern Recognition Letters, 1990, 11(5): 331-338. [10] Zokai S, Wolberg G. Image registration using log-polar mappings for recovery of large-scale similarity and projective transformations[J]. IEEE Transactions on Image Processing, 2005, 14(10): 1422-1434.