Design and Analysis of a Wheel-Legged Robot with a Suspension System
PAN Xixiang1, XU Kun2, WANG Yaobing3, DING Xilun2
1. Sino-French Engineer School, Beihang University, Beijing 100191, China;
2. School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China;
3. Beijing Key Laboratory of Intelligent Space Robotic Systems Technology and Applications, Beijing Institute of Spacecraft System Engineering, Beijing 100094, China
潘希祥, 徐坤, 王耀兵, 丁希仑. 具有悬挂系统的轮腿式机器人设计与分析[J]. 机器人, 2018, 40(3): 309-320.DOI: 10.13973/j.cnki.robot.170430.
PAN Xixiang, XU Kun, WANG Yaobing, DING Xilun. Design and Analysis of a Wheel-Legged Robot with a Suspension System. ROBOT, 2018, 40(3): 309-320. DOI: 10.13973/j.cnki.robot.170430.
Abstract:A 6-leg wheel-legged robot with an independent suspension system and a foot buffer mechanism is designed, which combines both advantages of the legged robot and the wheeled robot. An independent suspension system referred to the vehicles is applied to the robot to buffer the impact on the robot from the uneven ground and reduce the vibration, so that the inner environment can be stabilized in different complex environments. The mechanism and the structure of the proposed robot are particularly presented. The kinematics models of the robot, and the single-degree-of-freedom vibration models of its suspension mechanism and foot buffer mechanism are developed, and the buffering mechanisms are analyzed and compared. Dynamics simulations and analysis are carried out in different terrains with the software ADAMS. The results show that the independent suspension system can adapt better to different terrains in robot motion than the foot buffer mechanism, and the design combining both the suspension system and the foot buffer mechanism has a better buffering function than the design with a single buffer mechanism.
[1] Raibert M, Blankespoor K, Nelson G, et al. BigDog, the rough-terrain quadruped robot[J]. IFAC Proceedings Volumes, 2008, 41(2):10822-10825.
[2] Zhuang H C, Gao H B, Ding L, et al. Method for analyzing articulated torques of heavy-duty six-legged robot[J]. Chinese Journal of Mechanical Engineering, 2013, 26(4):801-812.
[3] Nakajima S, Nakano E, Takahashi T. Motion control technique for practical use of a leg-wheel robot on unknown outdoor rough terrains[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2004:1353-1358.
[4] Muller J, Schneider M, Hiller M. Modeling, simulation, and model-based control of the walking machine ALDURO[J]. IEEE/ASME Transactions on Mechatronics, 2000, 5(2):142-152.
[5] Wilcox B H. ATHLETE:An option for mobile lunar landers[C]//2008 IEEE Aerospace Conference. Piscataway, USA:IEEE, 2008:2711-2718.
[6] 徐坤,丁希仑,李可佳.圆周对称分布六腿机器人三种典型行走步态步长及稳定性分析[J].机器人,2012,34(2):231-241,256.Xu K, Ding X L, Li K J. Stride size and stability analysis of a radially symmetrical hexapod robot in three typical gaits[J]. Robot, 2012, 34(2):231-241,256.
[7] 田娜,丁希仑,戴建生.一种新型的变结构轮!/!腿式探测车机构设计与分析[J].机械设计与研究,2004,20(z1):268-270.Tian N, Ding X L, Dai J S. Design and analysis of a novel metamorphic wheel-legs rover mechanism[J]. Journal of Machine Design and Research, 2004, 20(z1):268-270.
[8] 张俊红,洪刘生,杨文钊,等.车辆悬架系统及其性能评价综述[J].机械设计与研究,2015(6):147-153.Zhang J H, Hong L S, Yang W Z, et al. Review of technique application and performance evaluation for the vehicle suspension system[J]. Machine Design and Research, 2015(6):147-153.
[9] 张智谦,倪建华,张陵.不同路况下车辆悬架系统的动态特性研究[J].机械科学与技术,2000(s1):33-35.Zhang Z Q, Ni J H, Zhang L. The dynamic characteristic of vehicle suspension system under the different surfaces of the road[J]. Mechanical Science and Technology, 2000(s1):33-35.
[10] 吴家敏,何俐萍,曾易寒,等.一种机器人车体悬挂系统:中国,CN201610853167.1[P].2017-02-22.Wu J M, He L P, Zeng Y H, et al. A kind of suspension on the robot vehicle body:China, CN201610853167.1[P]. 2017-02-22.
[11] 丁希仑,徐坤.一种新型变结构轮腿式机器人的设计与分析[J].中南大学学报,2009, 40(s1):91-101.Ding X L, Xu K. Design and analysis of a novel metamorphic wheel-legged rover mechanism[J]. Journal of Central South University, 2009, 40(s1):91-101.
[12] 庄红超,高海波,邓宗全,等.电驱动重载六足机器人关节转速分析方法[J].机械工程学报,2013,49(23):44-52.Zhuang H C, Gao H B, Deng Z Q, et al. Method for analyzing articulated rotating speeds of heavy-duty six-legged robot[J]. Journal of Mechanical Engineering, 2013, 49(23):44-52.
[13] Peng S J, Ding X L, Yang F, et al. Motion planning and implementation for the self-recovery of an overturned multi-legged robot[J]. Robotica, 2017, 35(5):1107-1120.
[14] 邓宗全,刘逸群,高海波,等.液压驱动六足机器人步行腿节段长度比例研究[J].机器人,2014,36(5):544-551.Deng Z Q, Liu Y Q, Gao H B, et al. On the segment length ratio of the walking leg of a hydraulically actuated hexapod robot[J]. Robot, 2014, 36(5):544-551.
[15] 于靖军,刘辛军,丁希仑.机器人机构学的数学基础[M].2版.北京:机械工业出版社,2016:81-84.Yu J J, Liu X J, Ding X L. Mathematic foundation of mechanisms and robotics[M]. 2nd ed. Beijing:China Machine Press, 2016:81-84.
[16] 徐坤,郑羿,丁希仑.六轮腿式机器人结构设计与运动模式分析[J].北京航空航天大学学报,2016,42(1):59-71.Xu K, Zheng Y, Ding X L. Structure design and motion mode analysis of a six wheel-legged robot[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(1):59-71.
[17] 周长城,潘礼军,于曰伟,等.车辆钢板弹簧悬架系统减振器最佳阻尼匹配[J].农业工程学报,2016,32(7):106-113.Zhou C C, Pan L J, Yu Y W, et al. Optimal damping matching for shock absorber of vehicle leaf spring suspension system[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(7):106-113.
[18] 苏军,陈学东,田文罡.六足步行机器人全方位步态的研究[J].机械与电子,2004(3):48-52.Su J, Chen X D, Tian W G. A study of the omnidirectional gait for a hexapod walking robot[J]. Machinery & Electronics, 2004(3):48-52.
[19] 丁希仑,王志英,Rovetta A.六边形对称分布六腿机器人的典型步态及其运动性能分析[J].机器人,2010,32(6):759-765.Ding X L, Wang Z Y, Rovetta A. Typical gaits and motion analysis of a hexagonal symmetrical hexapod robot[J]. Robot, 2010, 32(6):759-765.