A Cell Rotation Method Based on the Kinematics Model
ZHAO Qili1,2, CUI Maosheng3, SUN Mingzhu1,2, QIN Yanding1,2, ZHAO Xin1,2
1. Institute of Robotics and Automatic Information System, Nankai University, Tianjin 300071, China;
2. Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin 300071, China;
3. Institute of Animal Sciences, Tianjin 300312, China
A cell rotation method based on the kinematics model is developed to adjust cell-posture automatically in biological applications. Firstly, a kinematics model for cell rotation process is developed. Using this model, the relationship between the rotation angle (RA) and the efficiency of the rotation process is analyzed. Subsequently, a cycloidal moving trajectory of the injector is proposed to improve the control accuracy of the RA. With the integration of imaging processing methods and the injector motion control algorithms, a robotic cell rotation process for batch cells is achieved. Finally, the proposed method is applied to the robotic rotation of pig oocytes. The experimental results demonstrate that this system is able to perform the cell rotation with 90% success rate at average speed of 26.7s per cell. Moreover, the average control error of the RA in each rotation step is within 2.6°, which is significantly less than that of the manual method (8.1°). This method can be used in a precise and automatic posture-adjustment for the domestic oocytes in biological applications.
[1] Wilmut I, Schnieke A E, McWhir J, et al. Viable offspring derived from fetal and adult mammalian cells[J]. Nature, 2007, 385(27): 810-813.[2] 胡频,许孝凤,曹云霞,等.人卵母细胞第一极体活检对 胚胎发育影响的研究[J].安徽医科大学学报,2009,5(3): 583-585. Hu P, Xu X F, Cao Y X, et al. Effects on the first polar body biopsy of human oocyte[J]. Acta Universitatics Medicinalis Anhui, 2009, 5(3): 583-585.[3] Mattos L, Grant E, Thresher R, et al. From teleoperated to automatic blastocyst microinjections: Designing a new system from expert-controlled operations[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA: IEEE, 2008: 4036-4041.[4] Huang H B, Sun D, Mills J K, et al. Visual-based impedance control of out-of-plane cell injection systems[J].IEEE Transactions on Automation Science and Engineering, 2009, 6(3): 565-571. [5] 卢桂章,张建勋,赵新.面向生物工程实验的微操作机器 人[J].南开大学学报:自然科学版,1999,32(3):42-46. Lu G Z, Zhang J X, Zhao X. Micro-operation system facing to biological engineering experiments[J]. Acta Scientiarum Naturallum: Universitatis Nakaiensis, 1999, 32(3): 42-46.[6] 陈立国,王月明,杨治亮,等.显微视觉快速自动调焦方 法及实验[J].光学精密工程,2010,18(1):1361-1366. Chen L G, Wang Y M, Yang Z L, et al. Fast autofocus method for microscopic computer vision[J]. Optics and Precision Engineering, 2010, 18(1): 1361-1366.[7] 陈国良,黄心汉,周祖德.微装配机器人系统[J].机械工 程学报,2009,45(2):288-293. Chen G L, Huang X H, Zhou Z D. Micro-assembly robot system[ J]. Journal of Mechanical Engineering, 2009, 45(2): 288- 293.[8] 于靖军,裴旭,毕树生,等.柔性铰链机构设计方法的研 究进展[J].机械工程学报,2010,46(13):2-13. Yu J J, Pei X, Bi S S, et al. State-of-arts of design method for flexure mechanism[J]. Journal of Mechanical Engineering, 2010, 46(13): 2-13.[9] 韩江义,游有鹏,王化明,等.夹钳式反馈微操作系统的 设计与试验[J].机器人,2010,32(2):184-189. Han J Y, You Y P, Wang H M, et al. Design and experiments of clamp type force-feedback tele-micromanipulation system[J]. Robot, 2010, 32(2): 184-189.[10] 王鹏飞,郭伟,孙立宁.球基微操作器黏滑摩擦过程建模 与分析[J].中国机械工程,2011,22(15):1765-1769. Wang P F, Guo W, Sun L N. Modeling and analysis on stickslip friction course of spherical micromanipulator[J]. China Mechanical Engineering, 2011, 22(15): 1765-1769.[11] 田桂中,侯丽雅,章维一,等.细胞注射中数字化进退针 装置的实验研究[J].中国机械工程,2007,18(22):2671- 2673. Tian G Z, Hou L Y, Zhang W Y, et al. Experimental research on digital piercing and withdrawing micropipette device used in cell microinjection[J]. China Mechanical Engineering, 2007, 18(22): 2671-2673.[12] Wang X J, Wang X D, Yao G J, et al. Automatic micro-bonding technology of capillaries with adhesives[C]//6th International Conference on Electronic Packaging Technology. Piscataway, USA: IEEE, 2005: 1-5.[13] Zhang Y, Gao Y, Liu L Q, et al. Cutting forces related with lattice orientations of graphene using an atomic force microscopy based nanorobot[J]. Applied Physics Letters, 2012, 101(21): 213101.[14] 谭民,王硕.机器人技术研究进展[J].自动化学报,2013, 39(7):963-972. Tan M, Wang S. Research progress on robotics[J]. Acta Automatic Sinica, 2013, 39(7): 963-972.[15] Liang Y L, Huang Y P, Lu Y S, et al. Cell rotation using optoelectronic tweezers[J]. Biomicrofluidics, 2010, 4(4): 043003.[16] Liu X Y, Lu Z, Sun Y. Orientation control of biological cells under inverted microscopy[J]. IEEE Transactions on Mechatronics, 2011, 16(5): 918-924. [17] Leung C, Lu Z, Zhang X P, et al. Three-dimensional rotation of mouse embryos[J]. IEEE Transactions on Biomedical Engineering, 2012, 59(4): 1049-1056. [18] 孙明竹,赵新,卢桂章.基于离焦的微操作机器人系统光 轴方向深度测量[J].物理学报,2009,58(9):6248-6257. Sun M Z, Zhao X, Lu G Z. Depth measurement in the direction of optical axis based on defocused micromanipulationsystem[ J]. Acta Physica Sinica, 2009, 58(9): 6248-6257.[19] Zhao Q L, Cui M S, Zhao X, et al. Batch-operation process of nuclear transplantation based on global field of view[C]//30th Chinese Control Conference. Piscataway, USA: IEEE, 2011: 4089-4094.[20] Zhao Q L, Zhao X, Wang Y L, et al. Research on autonomous movement of oocyte in nuclear transplantation[J]. Control Engineering of China, 2012, 19(3): 389-393.[21] Zhao Q L, SunMZ, CuiMS, et al. Robotic weighing for spherical cells based on falling speed detection[C]//3rd International Conference on Manipulation, Manufacturing, and Measurement on Nanoscale. Piscataway, USA: IEEE, 2013: 264-268.[22] Wang Y L, Zhao X, Zhao Q L, et al. Automatic somatic cell operating process for nuclear transplantation[C]//7th IEEE International Conference on Nano/Micro Engineered and Molecular Systems. Piscataway, USA: IEEE, 2012: 356-363.