Dynamic Modeling and Analysis of Ship-based Stabilizing Platform in Non-inertial System
LIU Xiao1,2, ZHAO Tieshi1,2, GAO Jiawei1,2
1. Parallel Robot and Mechatronic System Laboratory of Hebei Province, Yanshan University, Qinhuangdao 066004, China;
2. Key Laboratory of Advanced Forging & Stamping Technology and Science of Ministry of Education, Yanshan University, Qinhuangdao 066004, China
Based on the kinematic characteristics of the ship-based stabilizing platform, the dynamics of stabilizing platform in non-inertial system is investigated and analyzed. By linear-bilinearity formulas of rigid body dynamics, the wrench of the stabilizing platform in non-inertial system are analyzed and the corresponding formulas are given, and the coupling dynamics formulas between the active joint input forces and motions of stabilizing platform are established based on the influence coefficient method. The dynamic model are decomposed into 19 items, and the dynamics characteristics of the stabilizing platform in different sea conditions are analyzed. Finally, the simplifying strategies of the dynamic model in different sea conditions are presented by defining the dynamics influencing factor of wrench applied on the system. It is proved by the numerical simulation that the simplifying strategies improve the computation efficiency greatly and only bring small simplifying errors, and the contradiction between dynamics model complexity and real-time control of the stabilizing platform in non-inertial system is solved.
[1] 黄真,赵永生,赵铁石.高等空间机构学[M].北京:高等教育出版社,2006:182-200,301-310.Huang Z, Zhao Y S, Zhao T S. Advanced spatial mechanism [M]. Beijing: Higher Education Press, 2006: 182-200, 301-310.[2] 罗二娟,牟德君,刘晓,等.耦合型3自由度并联稳定平台机构及其运动特征[J].机器人,2010,32(4):681-687.Luo E J, Mu D J, Liu X, et al. A 3-DOF coupling parallel mechanism for stabilized platform and its motion characteristics[J]. Robot, 2010, 32(4): 681-687.[3] Codourey A. Dynamic modeling of parallel robots for computed-torque control implementation[J]. International Journal of Robotics Research, 1998, 17(12): 1325-1336. [4] Sirouspour M R, Salcudean S E. Nonlinear control of hydraulic robots[J]. IEEE Transactions on Robotics and Automation, 2001, 17(2): 173-182. [5] Li J F, Wang J S. Inverse kinematic and dynamic analysis of a 3-DOF parallel mechanism[J]. Chinese Journal of Mechanical Engineering, 2003, 16(1): 54-58. [6] 白志富,韩先国,陈五一.基于Lagrange方程三自由度并联机构动力学研究[J].北京航空航天大学学报,2004,30(1):51-54.Bai Z F, Han X G, Chen W Y. Study of a 3-Dof parallel manipulator dynamics based on Lagrange's equation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2004, 30(1): 51-54.[7] Liu M J, Li C X, Li C N. Dynamics analysis of the Gough-Stewart platform manipulator[J]. IEEE Transactions on Robotics and Automation, 2000, 16(1): 94-98. [8] 赵铁石,李娜.蛇形机器人动力学建模的虚设机构法[J].机械工程学报,2007,43(7):66-71.Zhao T S,Li N. Nominal mechanism method of dynamic modeling for snake-like robots[J]. Chinese Journal of Mechanical Engineering, 2007, 43(7): 66-71.[9] Jazar R N. Theory of applied robotics: Kinematics, dynamics, and control[M]. 2nd ed. New York, USA: Springer-Verlag, 2010: 641-723.[10] Jain A, Rodriguez G. Linearization of manipulator dynamics using spatial operators[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1993, 23(1): 239-248. [11] 林富生,黄其柏,黄新乐,等.非惯性系动力学研究综述[J].武汉理工大学学报:信息与管理工程版,2007,29(4):67-71.Lin F S, Huang Q B, Huang X L, et al. A survey of the dynamic investigation in non-inertial systems[J]. Journal of Wuhan University of Technology: Information & Management Engineering, 2007, 29(4): 67-71.[12] 张立新,汪劲松,王力平.加减速运动条件下6-UPS型并联机床刚体动力学模型简化研究[J].机械工程学报,2003,39(11):117-122.Zhang L X, Wang J S, Wang L P. Simplification of the rigid body dynamic model for a 6-UPS parallel kinematic machine under the accelerated motion and the decelerated motion[J]. Chinese Journal of Mechanical Engineering, 2003, 39(11): 117-122.[13] 刘善增,余跃庆,刘庆波,等.3-R_RC并联机器人动力学分析[J].机械工程学报,2009,45(4):220-224.Liu S Z, Yu Y Q, Liu Q B, et al. Dynamic analysis of 3-R_RC parallel manipulator[J]. Chinese Journal of Mechanical Engineering, 2009, 45(4): 220224.[14] 李永刚,宋轶民,冯志友,等.基于牛顿欧拉法的3-RPS并联机构逆动力学分析[J].航空学报,2007,28(4):1210-1215.Li Y G, Song Y M, Feng Z Y, et al. Inverse dynamics of 3-RPS parallel mechanism by Newton-Euler formulation[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(4): 1210-1215.[15] Dasgupta B, Mruthyunjaya T S. A Newton-Euler formulation for the inverse dynamics of the Stewart platform manipulator[J]. Mechanism and Machine Theory, 1998, 33(7): 1135-1152.[16] 刘晓,赵铁石,王唱,等.非惯性系稳定平台运动分析与仿真[J].机器人,2013,35(5):723-730.Liu X, Zhao T S Wang C et al. Kinematics analysis and simulation of stabilizing platform in non-inertial system[J]. Robot, 2013, 35(5): 723-730.[17] 赵铁石,刘晓,苑飞虎,等.刚体加速度分析及其在舰载稳定平台系统中的应用[C/OL].中国科技论文在线,2013-02-25,http://www.paper.edu.cn/releasepaper/content/201302-420.Zhao T S, Liu X, Yuan F H, et al. Acceleration analysis of rigid body and its application for ship-based stabilized platform system[C/OL]//Sciencepaper Online, 2013-02-25, http://www. paper.edu.cn/releasepaper/content/201302-420.[18] 赵延治.大量程柔性铰并联六维力传感器基础理论与系统研制[D].秦皇岛:燕山大学,2009:79-82.Zhao Y Z. Basic theoretical and system development on wide range parallel six-component force sensor with flexible joints[D]. Qinhuangdao: Yanshan University, 2009: 79-82.[19] 李学忠,黄守训,林其生,等.船用摇摆试验台建模和控制系统设计[J].电气传动,2006,36(11):11-15.Li X Z, Huang S X, Lin Q S, et al. Model and control system for the simulation sway test system[J]. Electric Drive, 2006, 36(11): 11-15.