[1] Schaal S, Atkeson C G. Learning control in robotics[J]. IEEE Robotics and Automation Magazine, 2010, 17(2): 20-29. [2] Gräe K, Stükler J, Behnke S. Improving imitated grasping motions through interactive expected deviation learning[C]//2010 IEEE-RAS International Conference on Humanoid Robots. Piscataway, USA: IEEE, 2010: 397-404.[3] Minato T, Thomas D, Yoshikawa Y, et al. A model of the emergence of early imitation development based on predictability preference[C]//IEEE International Conference on Development and Learning. Piscataway, USA: IEEE, 2010: 19-25.[4] Vijayakumar S, D'Souza A, Schaal S. Incremental online learning in high dimensions[J]. Neural Computation, 2005, 17(2): 2602-2634.[5] Schaal S. Is imitation learning the route to humanoid robots[J]. Trends in Cognitive Sciences, 1999, 3(6): 233-242. [6] Calinon S, D'Halluin F, Sauser E L, et al. Learning and reproduction of gestures by imitation-an approach based on hidden Markov model and Gaussian mixture regression[J]. IEEE Robotics and Automation Magazine, 2010, 17(2): 44-54. [7] Poggio T, Bizzi E. Generalization in vision and motor control[J]. Nature, 2004, 431(7010): 768-774. [8] Nguyen K C, Perdereau V. Arm-hand movement: Imitation of human natural gestures with tenodesis effect[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA: IEEE, 2011: 1459-1464.[9] Gräe K, Stükler J, Behnke S. Learning motion skills from expert demonstrations and own experience using Gaussian process regression[C]//41st International Symposium on Robotics and 6th German Conference on Robotics. Frankfurt, Germany: VDE Conference Department, 2010: 212-219.[10] Ude A, Gams A, Asfour T, et al. Task-specific generalization of discrete and periodic dynamic movement primitives[J]. IEEE Transactions on Robotics, 2010, 26(5): 800-815. [11] Mülig M, Gienger M, Hellbach S, et al. Task-level imitation learning using variance-based movement optimization [C]//IEEE International Conference on Robotics and Automation. Piscataway, USA: IEEE, 2009: 1177-1184.[12] Ijspeert A J, Nakanishi J, Schaal S. Learning rhythmic movements by demonstration using nonlinear oscillators[C]// IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA: IEEE, 2002: 958-963.[13] Ijspeert A J, Nakanishi J, Hoffmann H, et al. Dynamical movement primitives: Learning attractor models for motor behaviors[J]. Neural Computation, 2013, 25(2): 328-373. [14] Aksoy E E, Abramov A, Dör J, et al. Learning the semantics of object-action relations by observation[J]. International Journal of Robotics Research, 2011, 30(10): 1229-1249. [15] Calinon S, Guenter F, Billard A. On learning, representing, and generalizing a task in a humanoid robot[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2007, 37(2): 286-298. [16] Antonelo A E, Schrauwen B. Supervised learning of internal models for autonomous goal-oriented robot navigation using reservoir computing[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA: IEEE, 2010: 2959-2964.[17] Yang J Y, Ma L, Bai D C. A visual automatic objective cognition method using human instruction for robot imitation learning[C]//The International Conference on Automatic Control and Artificial Intelligence. Xiamen: 2011.[18] 杨俊友,马乐,白殿春,等.机器人的混合特征视觉环境感知方法[J].中国图象图形学报,2012,17(1):114-122.Yang J Y, Ma L, Bai D C, et al. A robot vision environmental perception method based on hybrid features[J]. Journal of Image and Graphics, 2012, 17(1): 114-122.[19] Sugiura K, Iwahashi N, Kashioka H. Motion generation by reference-point-dependent trajectory HMMs[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA: IEEE, 2011: 350-356.[20] Haykin S. Neural networks: A comprehensive foundation[M]. Upper Saddle River, USA: Prentice Hall, 2001. |