A Drift Control Method for High-speed Wheeled Mobile Robot Based on Dynamic Model
ZHAO Lei1,2, WANG Hongpeng1,2, DONG Liang1,2, LIU Jingtai1,2
1. Institute of Robotics and Automatic Information System, Nankai University, Tianjin 300071, China;
2. Tianjin Key Laboratory of Intelligent Robotics, Tianjin 300071, China
赵磊, 王鸿鹏, 董良, 刘景泰. 一种基于动力学模型的高速轮式移动机器人漂移运动控制方法[J]. 机器人, 2014, 36(2): 137-146.DOI: 10.3724/SP.J.1218.2014.00137.
ZHAO Lei, WANG Hongpeng, DONG Liang, LIU Jingtai. A Drift Control Method for High-speed Wheeled Mobile Robot Based on Dynamic Model. ROBOT, 2014, 36(2): 137-146. DOI: 10.3724/SP.J.1218.2014.00137.
A drift control method is presented for high-speed wheeled mobile robot. Firstly, the dynamic model of mobile robot under complex conditions is established based on the uniform tire model. Subsequently, while the dynamic model is nonlinear and strongly coupled, a drift controller is designed based on the dynamic model by using feedback linearization method. This controller is able to track some desired posture and angular velocity. As common measure methods, such as vision, GPS, do not have good real-time performance, a position-velocity-measurement-unit is designed to serve for the task of drifting. The drift controller is validated by simulation and experiments.
[1] 刘景泰, 王鸿鹏.高速移动机器人高精度漂移控制[M]//10000个科学难题:信息科学卷.北京:科学出版社, 2011:709-711. Liu J T, Wang H P. Challenge of precise drift control for high speed mobile robots[M]//10000 selected problems in sciences: Information sciences. Beijing: Science Press, 2011: 709-711.[2] Oliver H, Kai M, Roland L. An experimental mobile robot platform for the study of dynamic effects and high speed control[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA: IEEE, 2011: 5523-5528.[3] Roland L, Benoit T, Oliver H, et al. High-speed mobile robot control in off-road conditions: A multi-model based adaptive approach[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA: IEEE, 2011: 6143-6149.[4] Atsushi K, Ryo U, Toshiyuki I, et al. Development of a high speed vision system for mobile robots[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA: IEEE, 2006: 1372-1377.[5] Yi J, Zhang J, Song D, et al. IMU-based localization and slip estimation for skid-steered mobile robots[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA: IEEE, 2007: 2845-2850.[6] Zhang J, Wang S S, Li H, et al. The sliding mode control based on extended state observer for skid steering of 4-wheel-drive electric vehicle[C]//IEEE International Conference on Consumer Electronics, Communications and Network. Piscataway, USA: IEEE, 2012: 2195-2200.[7] Wei Y, Oscar Y C, Emmanuel G C, et al. Analysis and experimental verification for dynamic modeling of a skid-steered wheeled vehicle[J]. IEEE Transactions on Robotics, 2010, 26(2): 340-353. [8] Lhomme-Desages D, Grand C, Guinot J. Trajectory control of a four-wheel skid-steering vehicle over soft terrain using a physical interaction model[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA: IEEE, 2007: 1164-1169.[9] Mohammadpour E, Naraghi M, Gudarzi M. Posture stabilization of skid steer wheeled mobile robots[C]//IEEE Inter-national Conference on Robotics and Automation and Mechatronics. Piscataway, USA: IEEE, 2010: 163-169.[10] Jesus M, Jorge L, Anthony M, et al. Power consumption modeling of skid-steer tracked mobile robots on rigid terrian[J]. IEEE Transactions on Robotics, 2009, 25(5): 1098-1108. [11] 李磊, 叶涛, 谭民, 等.移动机器人技术研究现状与未来[J].机器人, 2002, 24(5): 475-480. Li L, Ye T, Tan M, et al. Present state and future develop-ment of mobile robot technology research[J]. Robot, 2002, 24(5): 475-480.[12] 李群明, 熊蓉, 褚健.室内自主移动机器人定位方法研究综述[J].机器人, 2003, 25(6): 560-567. Li Q M, Xiong R. Chu J. Localization approach for indoor autonomous mobile robots: A review[J]. Robot, 2003, 25(6): 560-567.[13] Anthony M, Jorge L, Jesus M, et al. Experimental kinematics for wheeled skid-steer mobile robots[C]//IEEE/RSJ International Conference on Robots and Systems. Piscataway, USA: IEEE, 2007: 1222-1227.[14] Caldwell T, Murphey T. Relaxed optimization for mode estimation in skid steering[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA: IEEE, 2010: 5423-5428.[15] Yi J G, Wang H P, Zhang J J. Kinematic modeling and analysis of skid-steered mobile robots with application to low-cost inertial-measurement-unit-based motion estimation[J]. IEEE Transactions on Robotics, 2009, 25(5): 1087-1097. [16] 郭孔辉.各向摩擦系数不同条件下轮胎力学特性的统一理论模型[J].中国机械工程, 1996, 7(4): 90-93. Guo K H. Unified theoretical model of mechanical characteristics of tire while friction coefficient is different in different direction[J]. China Mechanical Engineering, 1996, 7(4): 90-93.[17] 郭孔辉, 刘青.稳态条件下用于车辆动力学分析的轮胎模型[J].汽车工程, 1998, 20(3): 129-134. Guo K H, Liu Q. Tire models for vehicle dynamics analysis in steady state condition[J]. Automotive Engineering, 1998, 20(3): 129-134.[18] 袁忠诚.轮胎稳态模型研究[D].长春:吉林大学, 2006. Yuan Z C. Study of steady state tire model[D]. Changchun: Jilin University, 2006.[19] 方勇纯, 卢桂章.非线性系统理论[M].北京:清华大学出版社, 2009: 45-63. Fang Y C, Lu G Z. Nonlinear system theory[M]. Beijing:Tsinghua University Press, 2009: 45-63.