[1] Vierra M. Minimally invasive surgery[J]. Annual Review of Medicine, 1995, 46(1): 147-158. [2] Vaisbuch E, Goldchmit C, Ofer D, et al. Laparoscopic hysterectomy versus total abdominal hysterectomy: A comparativestudy[J]. European Journal of Obstetrics & Gynecology and Reproductive Biology, 2006, 126(2): 234-238. [3] Finelli A, Gill I. Laparoscopic partial nephrectomy: Contemporary technique and results[J]. Urologic Oncologic-Seminars and Original Investigations, 2004, 22(2): 139-144. [4] Ballantyne G. Robotic surgery, telerobotic surgery, telepresence, and telementoring[J]. Surgical Endoscopy, 2002, 16(10): 1389-1402. [5] Breedveld P, Stassen H, Meijer D, et al. Observation in laparoscopic surgery: Overview of impeding effects and supporting aids[J]. Journal of Laparoendoscopic & Advanced Surgical Techniques, 2000, 10(5): 231-241. [6] Berguer R, Forkey D, Smith W. Ergonomic problems associated with laparoscopic surgery[J]. Surgical Endoscopy, 1999, 13(5): 466-468. [7] Furukawa T, Morikawa Y, Ozawa S, et al. The revolution of computer-aided surgery, the dawn of robotic surgery[J]. Minimally Invasive Therapy & Allied Technologies, 2001, 10(6): 283-288. [8] Tendick F, Jennings R, Tharp G, et al. Perception and manipulation problems in endoscopic surgery[M]//Lecture Notes in Computer-Integrated Surgery: Technology and Clinical Applications. Massachusetts, USA: MIT Press, 1996: 567-575.[9] Kavoussi L, Moore R, Adams J, et al. Comparison of robotic versus human laparoscopic camera control[J]. Journal of Urology, 1995, 154(6): 2134-2146. [10] Omote K, Feussner H, Ungeheuer A, et al. Self-guided robotic camera control for laparoscopic surgery compared with human camera control[J]. The American Journal of Surgery, 1999, 177(4): 321-324. [11] Nishikawa A, Hosoi T, Koara K, et al. A novel human-machine interface for controlling the position of a laparoscope[J]. IEEE Transactions on Robotics and Automation, 2003, 19(5): 825-841. [12] Murphy D, Challacombe B, Nedas T, et al. Equipment and technology in robotics[J]. Arch Esp de Urol, 2007, 60(4): 349-354.[13] Cavusoglu M, Yan J, Sastry S. A hybrid system approach to contact stability and force control in robotic manipulators[C]//Proceedings of the International Symposium on Intelligent Control. Piscataway, NJ, USA: IEEE, 1997: 143-148.[14] Arata J, Mitsuishi M, Warisawa S, et al. Development of a dexterous minimally-invasive surgical system with augmented force feedback capability[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA: IEEE, 2005: 3207-3212.[15] Verner L, Okamura A. Sensor/actuator asymmetries in telemanipulators: Implications of partial force feedback[C]//Pro-ceedings of the Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. Piscataway, USA: IEEE, 2006: 309-314.[16] Mahvash M, Okamura A. Friction compensation for a force-feedback telerobotic system[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA: IEEE, 2006: 3268-3273.[17] Ottensmeyer M, Salisbury J. In vivo data acquisition instrument for solid organ mechanical property[C]//Proceedings of the International Conference on Medical Image Computing and Computer Assisted Intervention. Berlin, Germany: Springer-Verlag, 2001: 975-982.[18] Samur E, Sedef M, Basdogan C, et al. A robotic indenter for minimally invasive measurement and characterization of soft tissue response[J]. Medical Image Analysis, 2007, 11(4): 361-373. [19] Bicchi A, Canepa G, Rossi D, et al. A sensor-based minimally invasive surgery tool for detecting tissue elastic properties[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA: IEEE, 1996: 884-888.[20] Menciassi A, Eisinberg A, Carrozza M, et al. Force sensing microinstrument for measuring tissue properties and pulse in microsurgery[J]. IEEE/ASME Transactions on Mechatronics, 2003, 8(1): 10-17. [21] Sokhanvar S, Packirisamy M, Dargahi J. A multifunctional PVDF-based tactile sensor for minimally invasive surgery[J]. Smart Material Structure, 2007, 16(4): 989-998. [22] Noonan D, Liu H, Zweiri Y, et al. A dual-function wheeled probe for tissue viscoelastic property identification during minimally invasive surgery[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA: IEEE, 2007: 2629-2634.[23] Bethea B, Okamura A, Kitagawa M, et al. Application of haptic feedback to robotic surgery[J]. Journal of Laparoendoscopic & Advanced Surgical Techniques, 2004, 14(13): 191-195.[24] Braun E, Mayer H, Knoll A, et al. The must-have in robotic heart surgery: Haptic feedback[M]//Lecture Notes in Medical robotics. Vienna, Austria: I-Tech Education and Publishing, 2008: 9-20.[25] Gwilliam J, Mahvash M, Vagvolgyi B, et al. Effects of haptic and graphical force feedback on teleoperated palpationule[C]//IEEE International Conference onRobotics and automation. Piscataway, USA: IEEE, 2009: 667-682.[26] Tavakoli M, Patel R, Moallem M. Robotic suturing forces in the presence of haptic feedback and sensory substitution[C]//IEEE Conference on Control Applications. Piscataway, USA: IEEE, 2005: 1-6.[27] Tavakoli M, Aziminejad A, Patel R, et al. Multi-sensory force/deformation cues for stiffness characterization in soft-tissue palpation[C]//Proceedings of the International Conference of the IEEE Engineering in Medicine and Biology Society. Piscataway, USA: IEEE, 2006: 837-840.[28] Kitagawa M, Okamura A, Bethea B, et al. Analysis of suture manipulation forces for teleoperation with force feedback[C]//Proceedings of the International Conference on Medical Image Computing and Computer Assisted Intervention. Berlin, Germany: Springer-Verlag, 2002: 155-162.[29] Okamura A. Methods for haptic feedback in teleoperated robot-assisted surgery[J]. Industrial Robot, 2004, 31(6): 499-508. [30] MacFarlane M, Rosen J, Hannaford B, et al. Force feedback grasper helps restore the sense of touch in minimally invasive surgery[J]. Journal of Gastrointestinal Surgery, 1999, 3(3): 278-285. [31] Tholey G, Desai J, Castellanos A. Force feedback plays a significant role in minimally invasive surgery: Results and analysis[J]. Annals of Surgery, 2005, 241(1): 102-109.[32] Deml B, Ortmaier T, Seibold U. The touch and feel in minimally invasive surgery[C]//IEEE International Workshop on Haptic, Audio and Visual Environments and Their Applications. Piscataway, USA, 2005.[33] Ortmaier T, Deml B, Kuebler B, et al. Robot assisted force feedback surgery[J]. Advances in Telerobotics, Springer Transactions in Advanced Robotics, 2007, 31(1): 341-358.[34] Wagner C, Stylopoulos N, Jackson P, et al. The benefit of force feedback in surgery: Examination of blunt dissection[J]. Presence: Teleoperators and Virtual Environments, 2007, 16(3): 252-262. [35] Okamura A, Verner L, Reiley C, et al. Haptics for robot-assisted minimally invasive surgery[J]. Robotics Research, Springer Transactions in Advanced Robotics, 2011, 66(1): 361-372.[36] Tendick F, Sastry S, Fearing R, et al. Applications of micromechatronics in minimally invasive surgery[J]. IEEE/ASME Transactions on Mechatronics, 1998, 3(1): 34-42. [37] Trejos A, Patel R, Naish M. Force sensing and its application in minimally invasive surgery and therapy: A survey[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2010, 224(7): 1435-1454. [38] Brown J, Rosen J, Kim Y, et al. In-vivo and in-situ compressive properties of porcine abdominal soft tissues[C]//Proceedings of Medicine Meets Virtual Reality. Amsterdam, Netherlands: IOS Press, 2003: 26-32.[39] Brown J, Rosen J, Moreyra M, et al. Computer-controlled motorized endoscopic grasper for in vivo measurement of soft tissue biomechanical characteristics[C]//Proceedings of Medicine Meets Virtual Reality. Amsterdam, Netherlands: IOS Press, 2002: 71-73.[40] Mayer H, Gomez F, Wierstra D, et al. A system for robotic heart surgery that learns to tie knots using recurrent neural net-works[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA: IEEE, 2006: 543-548.[41] Mayer H, Nagy I, Knoll A, et al. The Endo[PA]R system for minimally invasive robotic surgery[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA: IEEE, 2004: 3637-3642.[42] Prasad S, Kitakawa M, Fischer G, et al. A modular 2-DOF force-sensing instrument for laparoscopic surgery[C]//Pro-ceedings of the International Conference on Medical Image Computing and Computer Assisted Intervention. Berlin, Germany: Springer-Verlag, 2003: 279-286.[43] Fischer G, Akinbiyi T, Saha S, et al. Ischemia and force sensing surgical instrument for augmenting available surgeon information[C]//Proceedings of IEEE/RAS-EMBS International Conference on BioRobotics and Biomechatronics. Piscataway, USA: IEEE, 2006: 1030-1035.[44] Seibold U, Hirzinger G. A 6-axis force torque sensor design for haptic feedback in minimally invasive robotic surgery[C]//2nd VDE World Microtechnologies Congress. Munich, Germany: VDE Association for EEIT, 2003: 239-244.[45] Kuebler B, Seibold U, Hirzinger G. Development of actuated and sensor integrated forceps for minimally invasive surgery[J]. International Journal of Medical Robotics and Computer Assisted Surgery, 2005, 1(3): 96-107. [46] Menciassi A, Eisinberg A, Carrozza M, et al. Force sensing microinstrument for measuring tissue properties and pulse in microsurgery[J]. IEEE/ASME Transactions on Mechatronics, 2003, 8(1): 10-17. [47] Tavakoli M, Patel R, Moallem M. Haptic interaction in robot-assisted endoscopic surgery: A sensorized end-effector[J]. International Journal of Medical Robotics and Computer Assisted Surgery, 2005, 1(2): 53-63. [48] Buess G, Schurr M, Fischer S. Robotics and allied technologies in endoscopic surgery[J]. Archives of Surgery, 2000, 135(2): 229-235. [49] Valdastri P, Harada K, Menciassi A, et al. Integration of a miniaturized triaxial force sensor in a minimally invasive surgical tool[J]. IEEE Transactions on Biomedical Engineering, 2006, 53(11): 2397-2400. [50] Rebello K. Applications of MEMS in surgery[J]. Proceedings of the IEEE, 2004, 92(1): 43-55. [51] Peirs J, Clijnen J, Reynaerts D, et al. A micro optical force sensor for force feedback during minimally invasive robotic surgery[J]. Sensors and Actuators, A: Physical, 2004, 115(2): 447-455.[52] Chinzei K, Hata N, Jolesz F, et al. MR compatible surgical assist robots: System integration and preliminary feasibilitystudy[C]//Proceedings of the International Conference on Medical Image Computing and Computer Assisted Intervention. Berlin, Germany: Springer-Verlag, 2000: 921-930.[53] Deary K, Melzer A, Watson V, et al. Interventional robotic systems: Applications and technology state-of-the-art[J]. Minimally Invasive Therapy, 2006, 15(2): 101-113. [54] Chinzei K, Kikinis R, Jolesz F, et al. MR compatibility of mechatronic devices: Design criteria[C]//Proceedings of the International Conference on Medical Image Computing and Computer Assisted Intervention. Berlin, Germany: Springer-Verlag, 1999: 1020-1031.[55] Tada M, Sasaki S, Ogasawara T. Development of an optical 2-axis force sensor usable in MRI environments[C]//Proceedings of IEEE Sensors. Piscataway, USA: IEEE, 2002: 984-989.[56] Puangmali P, Liu H, Seneviratne L, et al. Miniature 3-axis distal force sensor for minimally invasive surgical palpation[J]. IEEE/ASME Transactions on Mechatronics, 2012, 17(4): 646-656. [57] Rosen J, Hannaford B, MacFarlane M, et al. Force controlled and teleoperated endoscopic grasper for minimally invasive surgery -- experimental performance evaluation[J]. IEEE Transactions on Biomedical Engineering, 1999, 46(10): 1212-1221. [58] Mahvash M, Okamura A. Friction compensation for enhancing transparency of a teleoperator with compliant transmission[J]. IEEE Transactions on Robotics, 2007, 23(6): 1240-1246. [59] Mahvash M, Okamura A. Enhancing transparency of a position exchange teleoperator[C]//Proceedings of the Joint EuroHap-tics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. Piscataway, USA: IEEE, 2007: 470-475.[60] Tholey G, Pillarisetti A, Green W, et al. Design, develop-ment, and testing of an automated laparoscopic grasper with 3-D force measurement capability[C]//Proceedings of the International Symposium on Medical Simulation. Berlin, Germany: Springer-Verlag, 2004: 38-48.[61] Tadano K, Kawashima K. Development of 4-DOFs forceps with force sensing using pneumatic servo system[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA: IEEE, 2006: 2250-2255.[62] 曹永刚,张玉茹,马运中.6-RSS型并联机构的工作空间分析与参数优化[J].机械工程学报,2008,44(1): 19-24. Cao Y G, Zhang Y R, Ma Y Z. Workspace analysis and parameter optimization of 6-RSS parallel mechanism[J]. Chinese Journal of Mechanical Engineering, 2008, 44(1): 19-24.[63] 孙立宁,张剑,杜志江.一种基于图像导航的骨外科手术机器人系统[J].哈尔滨工程大学学报,2006,27(2): 285-289. Sun L N, Zhang J, Du Z J. An image guided orthopedic surgery robot system[J]. Journal of Harbin Engineering University, 2006, 27(2): 285-289.[64] 李建民,王树新,张建勋,等.微创手术机器人控制策略[J].天津大学学报,2011,44(10): 884-889. Li J M, Wang S X, Zhang J X, et al. Control strategies of minimally invasive surgery robot[J]. Journal of Tianjin University, 2011, 44(10): 884-889.[65] Kitagawa M, Dokko D, Okamura A, et al. Effect of sensory substitution on suture manipulation forces for robotic surgical systems[J]. Journal of Thoracic and Cardiovascular Surgery, 2005, 129(1): 151-158. [66] Schoonmaker R, Cao C. Vibrotactile feedback enhances force perception in minimally invasive surgery[C]//Proceedings of the Human Factors and Ergonomics Society Annual Meeting. Japan: HFES, 2006: 1029-1033.[67] Akinbiyi T, Reiley C, Saha S, et al. Dynamic augmented reality for sensory substitution in robot-assisted surgical systems[C]//28th IEEE EMBS Annual International Conference. Piscataway, USA: IEEE, 2006: 567-570.[68] Reiley C, Akinbiyi T, Burschka D, et al. Effects of visual force feedback on robot-assisted surgical task performance[J]. Journal of Thoracic and Cardiovascular Surgery,2008, 135(1): 196-202.  |