Coordinated Stability Control of Tethered Space Robot for Capturing the Target
XU Xiudong1,2, HUANG Panfeng1,2, MENG Zhongjie1,2
1. Research Center of Intelligent Robotics, School of Astronautics, Northwestern Polytechnical University, Xi'an 710072, China;
2. National Key Laboratory of Aerospace Flight Dynamics, Northwestern Polytechnical University, Xi'an 710072, China
For stability control problem of tethered space robot for capturing uncontrolled target, a coordinated stability control method is proposed, which combines active damping control of space manipulator and attitude stability control of space base by using space tether and reaction wheel. Firstly, the dynamics model for capturing the target, contact and impact model between tethered space robot and target are established, and movement states of tethered space robot and the target are analyzed. Next, the active damping control law of space manipulator joint is introduced in order to reduce the impact force on the end of space manipulator. A sliding mode attitude control law is designed based on changing attitude of space base, and the control torque required by space base is supplied through space tether and reaction wheel. The proposed coordinated stability control method is analyzed and compared with the joint active damping control method in the simulation process of capturing the target, and the results show that the proposed method can keep space manipulator and space base stable, and the interferential influence of space tether on space base and target is tiny, which meets the stability requirements for capturing the target of tethered space robot.
[1] 魏承, 赵阳, 王红柳.基于滑模控制的空间机器人软硬性抓取[J].机械工程学报, 2011, 47(1):43-47. Wei C, Zhao Y, Wang H L. Space robot soft-hard grasping based on sliding mode control[J]. Journal of Mechanical Engineering, 2011, 47(1): 43-47.[2] Wei C, Liu T X, Zhao Y. Grasping strategy in space robot capturing floating target[J]. Chinese Journal of Aeronautics, 2010, 23(1): 591-598.[3] 魏承, 赵阳, 田浩.空间机器人捕获浮游目标的抓取控制[J].航空学报, 2010, 31(3):632-637. Wei C, Zhao Y, Tian H. Grasping control of space robot for capturing floating target[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(3): 632-637.[4] 陈钢, 贾庆轩, 孙汉旭, 等.空间机器人目标捕获过程中碰撞运动分析[J].机器人, 2010, 32(3): 432-438. Chen G, Jia Q X, Sun H X, et al. Analysis on impact motion of space robot in the object capturing process[J]. Robot, 2010, 32(3): 432-438.[5] 张庆利, 倪风雷, 朱映远, 等.三手指空间机器人末端执行器的柔顺抓捕策略[J].机器人, 2011, 33(4): 427-433. Zhang Q L, Ni F L, Zhu Y Y, et al. Compliant grasp strategy for three-fingered space robot end-effector[J]. Robot, 2011, 33(4): 427-433.[6] 刘厚得, 梁斌, 李成, 等.航天器抓捕后复合体系统稳定的协调控制研究[J].宇航学报, 2012, 33(7): 920-929.Liu H D, Liang B, Li C, et al. Research on coordinated control method for stabilizing a coupling system after the spacecraft is captured[J]. Journal of Astronautics, 2012, 33(7): 920-929.[7] Yoshida K, Hashizume K. Zero reaction maneuver flight validation with ETS-VⅡ space robot and extension to kinematically redundant arm[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA: IEEE, 2001: 441-446.[8] Yoshida K, Nakanishi H. Impedance matching in capturing a satellite by a space robot[C]//IEEE/RSJ Conference on Intelligent Robots and Systems. Piscataway, USA: IEEE, 2003: 3059-3064.[9] Yoshida K, Sashida N, Kurazume R, et al. Modeling of collision dynamics for space free-floating links with extended generalized inertia tensor[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA: IEEE, 1992: 899-904.[10] Nenchev D N, Yoshida K. Impact analysis and post-impact motion control issues of a free-floating space robot contacting a tumbling object[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA: IEEE, 1998: 913-919.[11] Yoshida K, Sashida N. Modeling of impact dynamics and impulse minimization for space robots[C]//IEEE International Conference on Intelligent Robots and Systems. Piscataway, USA: IEEE, 1993: 2064-2069.[12] Matsumoto S, Ohkami Y, Wakabayashi Y, et al. Satellite capturing strategy using agile orbital servicing vehicle, hyper-OSV[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA: IEEE, 2002: 2309-2314.[13] Nenchev D N, Yoshida K, Vichitkulsawat P, et al. Reaction null-space control of flexible structure mounted manipulator systems[J]. IEEE Transactions on Robotics and Automation, 1999, 15(6): 1011-1023. [14] Nenchev D N, Yoshida K. Impact analysis and post-Impact motion control issues of a free-floating space robot subject to a force impulse[J]. IEEE Transactions on Robotics and Automation, 1999, 15(3): 548-557. [15] Nakamura Y, Sasaki F, Nakasuka S. Guidance and control of ''tethered retriever" with collaborative tension-thruster control for future on-orbit service missions[C]//8th International Symposium on Artificial Intelligence, Robotics and Automation in Space. Washington, USA: NASA, 2005: 5-8.[16] Nohmi M, Nenchev D N, Uchiyama M. Tethered robot casting using a spacecraft-mounted manipulator[J]. Journal of Guidance, Control and Dynamics, 2001, 24(4): 827-833. [17] Nohmi M. Attitude control of a tethered space robot by link motion under microgravity[C]//IEEE International Conference on Control Applications. Piscataway, USA: IEEE, 2004: 424-429.[18] Godard, Kumar K D, Tan B. Fault-tolerant stabilization of a tethered satellite system using offset control[J]. Journal ofSpacecraft and Rockets, 2008, 45(5): 1070-1084. [19] Mori O, Matunaga S. Coordinated control of tethered satellite cluster systems[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston, USA: AIAA, 2001: 6-9.[20] 徐秀栋, 黄攀峰, 孟中杰.空间绳系机器人逼近目标协调控制方法[J].航空学报, 2013, 35(5):1222-1231. Xu X D, Huang P F, Meng Z J. Coordinated control method of space tethered robot for approaching targets[J]. Acta Aeronautica et Astronautica Sinica, 2013, 35(5): 1222-1231.