1. School of Control Science and Engineering, Shandong University, Jinan 250061, China;
2. School of Computer Science and Technology, Shandong University of Finance and Economics, Jinan 250014, China
Abstract:In intelligent service task, it is difficult for indoor mobile robots to obtain semantic information of complex environment. A semantic map based on semantic acquisition structure of environment is constructed by designing cloud semantic database. The robot can not only get the geometric description of environment, but also obtain the semantic map which contains objects relationship based on rich semantic database of complex environment. It solves the low reliability of adding semantic information, the error of updating map and the lack of scalability in the process of constructing the semantic map. It begins by presenting a semantic database construction project. Then semantic sub-databases are obtained by classifying the semantic database based on SVM (support vector machine) algorithm. On the base of semantic sub-databases, the feature model database is formed by extracting key feature points based on network text classification. By combining the semantic sub-database with the semantic classification list, the objects can be identified. Secondly, the implementation of cloud semantic map for the intelligent service task is discussed. Based on the multi-scale image segmentation and the analysis of disparity map, annotation database and belonging database are designed to describe the belonging relationship between objects. Finally, the semantic map is constructed and the classification efficiency of semantic database is analyzed in simulation experiments to verify the validity of the method.
[1] Vasudevan S, Gächter S, Nguyen V T, et al. Cognitive maps for mobile robots-An object based approach[J]. Robotics and Autonomous Systems, 2007, 55(5): 359-371.
[2] Jebari I, Bazeille S, Battesti E, et al. Multi-sensor semantic mapping and exploration of indoor environments[C]//IEEE Conference on Technologies for Practical Robot Applications. Piscataway, USA: IEEE, 2011: 151-156.
[3] 吴培良,孔令富,赵逢达.一种服务机器人家庭全息地图构建方法研究[J].计算机应用研究,2010,27(3):981-985.Wu P L, Kong L F, Zhao F D. Research on constructing of household holographic map for service robot[J]. Application Research of Computers, 2010, 27(3): 981-985.
[4] Wu H, Tian G H, Li Y, et al. Spatial semantic hybrid map building and application of mobile service robot[J]. Robotics and Autonomous Systems, 2014, 62(6): 923-941.
[5] 吴皓,田国会,陈西博,等.基于机器人服务任务导向的室内未知环境地图构建[J].机器人,2010,32(2):196-203.Wu H, Tian G H, Chen X B, et al. Map building of indoor unknown environment based on robot service mission direction[J]. Robot, 2010, 32(2): 196-203.
[6] 王锋.面向服务机器人的室内语义地图构建的研究[D].合肥:中国科学技术大学,2013.Wang F. Semantic mapping for domestic service robots[D]. Hefei: University of Science and Technology of China, 2013.
[7] 赵伟伟.基于单目视觉的移动机器人多层语义地图构建[D].北京:北京工业大学,2014.Zhao W W. Multi-layer semantic map building of mobile robot based on monocular vision[D]. Beijing: Beijing University of Technology, 2014.
[8] 陶重犇.未知环境探测及三维室内语义建图研究[D].无锡:江南大学,2014.Tao Z B. Research of unknown environment exploration and indoor 3D semantic mapping[D]. Wuxi: Jiangnan University, 2014.
[9] 王广奇.基于 RFID 和激光传感器的语义地图更新及机器人定位方法研究[D].济南:山东大学,2013.Wang G Q. The research of semantic map updates and robot localization based on RFID and laser sensor[D]. Jinan: Shandong University, 2013.
[10] 吴皓,田国会,段朋,等.基于RFID技术的大范围未知环境信息表征[J].中南大学学报:自然科学版,2013(S1):166-170.Wu H, Tian G H, Duan P, et al. Navigation information description of large unknown environment based on RFID technology[J]. Journal of Central South University: Science and Technology, 2013(S1): 166-170.
[11] Ibraheem B, Hamdy A, Darwish N. Textual signs reading for indoor semantic map construction[J]. International Journal of Computer Applications, 2012, 53(10): 36-43.
[12] Nieto-Granda C, Rogers J G, Trevor A J B, et al. Semantic map partitioning in indoor environments using regional analysis[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA: IEEE, 2010: 1451-1456.
[13] Rogers J G, Christensen H I. Robot planning with a semantic map[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA: IEEE, 2013: 2239-2244.
[14] Kasprzak W, Stefanczyk M. 3D semantic map computation based on depth map and video image[M]//Lecture Notes in Computer Science, vol.7594. Berlin, Germany: Springer-Verlag, 2012: 441-448.
[15] Tuffery P, Lacroix Z, Menager H. Semantic map of services for structural bioinformatics[C]//18th International Conference on Scientific and Statistical Database Management. Los Alamitos, USA: IEEE Computer Society, 2006: 217-224.
[16] 徐南轩,邹恒明.一种反映词语相关度语义库的构建方法[J].上海交通大学学报,2008,42(7):1129-1132.Xu N X, Zou H M. Constructing semantic library to reflect word interrelationship[J]. Journal of Shanghai Jiaotong University, 2008, 42(7): 1129-1132.
[17] 李沛杰,张兴明,沈剑良.基于动态信任语义库的Web服务匹配算法[J].计算机工程与设计,2015(3):652-657.Li P J, Zhang X M, Shen J L. Web service matching algorithm based on dynamic trust-based semantic library[J]. Computer Engineering and Design, 2015(3): 652-657.
[18] Mizell D. Dynamic graph system for a semantic database, USA: 20150138206 A1[P]. 2015-05-21.
[19] Zheng B L, Yuan N J, Zheng K, et al. Approximate keyword search in semantic trajectory database[C]//IEEE 31st International Conference on Data Engineering. Piscataway, USA: IEEE, 2015: 975-986.
[20] Kehoe B, Matsukawa A, Candido S, et al. Cloud-based robot grasping with the Google object recognition engine[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA: IEEE, 2013: 4263-4270.
[21] Furler L, Nagrath V, Malik A S, et al. An auto-operated telepresence system for the Nao humanoid robot[C]//2013 International Conference on Communication Systems and Network Technologies. Piscataway, USA: IEEE, 2013: 262-267.
[22] Saxena A, Jain A, Sener O, et al. Robobrain: Large-scale knowledge engine for robots[EB/OL]. (2014-12-01) [2016-01-15]. http://arxiv.org/pdf/1412.0691v1.pdf.
[23] Zweigle O, van de Molengraft, R, D'Andrea R, et al. RoboEarth: Connecting robots worldwide[C]//Proceedings of the 2nd International Conference on Interaction Sciences: Information Technology, Culture and Human. New York, USA: ACM, 2009: 184-191.
[24] Riazuelo L, Tenorth M, Marco D D, et al. RoboEarth semantic mapping: A cloud enabled knowledge-based approach[J]. IEEE Transactions on Automation Science and Engineering, 2015, 12(2): 432-443.
[25] Joachims T. Making large-scale SVM learning practical[R]. Dortmund, Germany: Universitat Dortmund, 1998: 499-526.
[26] Mueller J P. Mining Google web services: Building applications with the Google API[M]. Alameda, USA: SYBEX, 2004.
[27] Huang A. Similarity measures for text document clustering[C]//Proceedings of the Sixth New Zealand Computer Science Research Student Conference. 2008: 49-56.
[28] 张官亮,邹焕新,秦先祥,等.基于改进 SIFT 特征和图转换匹配的图像匹配算法[J].计算机应用研究,2013,30(9):2861-2864.Zhang G L, Zou H X, Qin X X, et al. Algorithm of image matching based on improved SIFT feature and graph transformation matching[J]. Application Research of Computers, 2013,30(9):2861-2864.
[29] Ng P C, Henikoff S. SIFT: Predicting amino acid changes that affect protein function[J]. Nucleic Acids Research, 2003, 31(13): 3812-3814.
[30] Yamada M, Ohnishi J, Ohkawara B, et al. NARF, an nemo-like kinase (NLK)-associated ring finger protein regulates the ubiquitylation and degradation of T cell factor/lymphoid enhancer factor (TCF/LEF)[J]. Journal of Biological Chemistry, 2006, 281(30): 20749-20760.
[31] Zhu F Q, Bosch M, Khanna N, et al. Multiple hypotheses image segmentation and classification with application to dietary assessment[J]. IEEE Journal of Biomedical & Health Informatics, 2015, 19(1): 377-388.
[32] 王爱红,王琼华,李大海,等.立体显示中立体深度与视差图获取的关系[J].光学精密工程,2009,17(2):433-438.Wang A H, Wang Q H, Li D H, et al. Relationship between stereo depth and parallax image captured in stereoscopic display[J]. Optics and Precision Engineering, 2009,17(2):433-438.