A six-degrees-of-freedom parallel mechanism design method is proposed, and this method with constant redundant driving force can be applied to heavy load condition. A dynamical model of redundant parallel mechanism with heavy load is established. Six typical motion states of the redundant parallel mechanism are simulated and optimized, using the upper hinged point coordinate of redundant landing leg and the redundant driving force as input variables and focusing on minimizing the landing leg drive forces. The optimization results show that the load capacity of the platform is increased by 24.02%.
[1] Nokleby S B, Fisher R, Podhorodeski R P. Force capabilities of redundantly-actuated parallel manipulators[J]. Mechanism and Machine Theory, 2005, 40(5): 578-599. [2] 邵华, 关立文, 王立平, 等.冗余并联机床驱动力优化解析[J].清华大学学报, 2007, 47(8):1325-1329.Shao H, Guan L W, Wang L P, et al. Drive force optimization for a redundant parallel machine[J]. Journal of Tsinghua University, 2007, 47(8): 1325-1329.[3] 马建明.飞行模拟器液压Stewart平台奇异位形分析及其解决方法研究[D].哈尔滨:哈尔滨工业大学, 2010:101-102.Ma J M. Analysis of singular configuration and research of its solving method of the hydraulic Stewart platform of flight simulator[D]. Harbin: Harbin Institute of Technology, 2010: 101-102.[4] 段学超, 仇原鹰, 段宝岩.基于Metropolis遗传算法的并联机器人结构优化设计[J].机器人, 2006, 28(4):433-438.Duan X C, Qiu Y Y, Duan B Y. Structural design optimization of parallel manipulator based on Metropolis genetic algorithm[J]. Robot, 2006, 28(4): 433-438.[5] 刘冰, 李剑锋, 费仁元.基于遗传算法的并联微动机器人的机构优化设计[J].中国机械工程, 2007, 18(5):554-558.Liu B, Li J F, Fei R Y. Design optimization of parallel micromanipulator based on GA algorithm[J]. China Mechanical Engineering, 2007, 18(5): 554-558.