A new type of 6-wheel guide-bar-linkage suspension is proposed according to the rough terrain that mobile robots drive over, by considering the factors of obstacles crossing over, terrain adaptability and robot cab stability. Its structure and working scheme are thoroughly discussed, and a mechanical model, formed by wheels, terrain and suspension in the condition of the cab running over the terrain, is built. The suspension's terrain-adaptability is evaluated from the view of DOF (degree of freedom) computation. A parametric model of the suspension in Pro/E is built, the cab's stability simulations are conducted in Pro/Mechanism environment when single-wheel lifting and double-wheel lifting respectively, and Euler angles of cab are measured while the heights of front, middle or rear wheels independently or collaboratively changing. These tests are followed by simulations in ADAMS to examine the adaptability of the suspension in comprehensive terrain. Finally, a physical prototype is manufactured and performances of the prototype are tested in respect of grade climbing and obstacle crossing over. The results indicate that the distribution of load on the wheel is even, the adaptability to terrain is strong, and it can cross over a vertical obstacle as high as 350 mm.
[1] 胡明, 邓宗全, 王少纯, 等.月球探测车移动系统的关键技术分析[J].哈尔滨工业大学学报, 2003, 35(7):795-798.Hu M, Deng Z Q, Wang S C, et al. Key technologies for lunar rover locomotive system[J]. Journal of Harbin Institute of Technology, 2003, 35(7): 795-798.[2] 徐文福, 毛志刚.核电站机器人研究现状与发展趋势[J].机器人, 2011, 33(6):758-767.Xu W F, Mao Z G. Research status and development trend of nuclear power plant robots[J]. Robot, 2011, 33(6): 758-767.[3] Bickler D B. Articulated suspension system, USA: 4840394A1[P]. 1989-06-20.[4] Tunstel E, Huntsberger T, Trebi-Ollennu A, et al. FIDO rover system enhancements for high-fidelity mission simulations[C]// 7th International Conference on Intelligent Autonomous System. Amsterdam, Netherlands: IOS Press, 2001: 349-356.[5] Chen B C, Wang R B, Lu Y, et al. Design and simulation research on a new type of suspension for lunar rover[C]//IEEE International Conference on Computational Intelligence in Robotics and Automation. Piscataway, USA: IEEE, 2007: 173-177.[6] 李荣枝.美军机器骡多功能通用/后勤机器人车辆[J].国外坦克, 2006(8):24-25.Li R Z. US army "MULE"——Multifunction Utility Logistics and Equipment vehicle[J]. Foreign Tank, 2006(8): 24-25.[7] Carnegie Mellon University Robotics Institute NREC. Crusher[EB/OL].[2012-02-09]. http://www.rec.ri.cmu.edu/ projects/crusher/.[8] Boston Dynamics. BigDog——The most advanced rough-terrain robot on Earth[EB/OL].[2011-03-10]. http://www.bostondynamics.com/robot_bigdog.html.[9] 丁良宏, 王润孝, 冯华山, 等.浅析BigDog四足机器人[J].中国机械工程, 2012, 23(5):505-514.Ding L H, Wang R X, Feng H S, et al. Brief analysis of a BigDog quadruped robot[J]. China Mechanical Engineering, 2012, 23(5): 505-514.[10] Boston Dynamics. RHex——Devours rough terrain[EB/OL].[2011-03-10]. http://www.bostondynamics.com/robot_rhex.html.[11] Boston Dynamics. PETMAN[EB/OL].[2011-03-10]. http://www.bostondynamics.com/ robot_petman.html.[12] 郭丽峰, 陈恳, 赵旦谱, 等.一种轮腿式变结构移动机器人研究[J].制造业自动化, 2009, 31(10):1-6.Guo L F, Chen K, Zhao D P, et al. Study on a wheel-legged hybrid mobile robot[J]. Manufacturing Automation, 2009, 31(10): 1-6.[13] 李允旺.矿井救灾机器人行走机构研究[D].徐州:中国矿业大学, 2010.Li Y W. Study on mobile mechanisms for rescue robots in underground coal mine[D]. Xuzhou: China University of Mining and Technology, 2010.[14] Siegwart R, Lamon P, Estier T, et al. Innovative design for wheeedl locomotion in rough terrain[J]. Robotics and Autonomous Systems, 2002, 40(2/3): 151-162.[15] Saranli U, Buehler M, Koditschek D E. RHex: A simple and highly mobile hexapod robot[J]. International Journal of Robotics Research, 2001, 20(7): 616-631. [16] 程刚.非结构化环境中移动机器人系统越障运动机理的研究[D].合肥:中国科学技术大学, 2006.Cheng G. Research on over-obstacle motion mechanism of the whole mobile robot system in unstructure environment[D]. Hefei: University of Science and Technology of China, 2006.[17] 钱堃, 马旭东, 戴先中.基于概念地图的机器人导航方法[J].东南大学学报:自然科学版, 2010, 40(S1):144-148.Qian K, Ma X D, Dai X Z. Conceptual maps based navigation for mobile robots[J]. Journal of Southeast University: Natural Science Edition, 2010, 40(S1): 144-148.[18] 陶建国, 邓宗全, 高海波, 等.月球车连杆式差速平衡机构的运动学分析[J].哈尔滨工业大学学报, 2009, 41(9):21-26.Tao J G, Deng Z Q, Gao H B, et al. Kinematics analysis of differential bar linkage on lunar rover[J]. Journal of Harbin Institute of Technology, 2009, 41(9): 21-26.[19] 王锋.月球车连杆式差速平衡机构的设计与分析[D].哈尔滨:哈尔滨工业大学, 2007.Wang F. Design and analysis of differential bar linkage on lunar rover[D]. Harbin: Harbin Institute of Technology, 2007.[20] 李允旺, 葛世荣, 朱华.摇杆式移动机器人的齿式差动机构研究[J].机器人, 2009, 31(3):235-241.Li Y W, Ge S R, Zhu H. Gear-type differential mechanisms for rocker-type mobile robots[J]. Robot, 2009, 31(3): 235-241.[21] 孙桓, 陈作模, 葛文杰.机械原理[M].第7版.北京:高等教育出版社, 2006:12-23.Sun H, Chen Z M, Ge W J. Theory of machines and mechanisms[M]. 7th ed. Beijing: Higher Education Press, 2006: 12-23.[22] 孟宪源, 姜琪.机构构型与应用[M].北京:机械工业出版社, 2004:14-20.Meng X Y, Jiang Q. Mechanism configuration and its applications[M]. Beijing: China Machine Press, 2004: 14-20.[23] 方振平, 陈万春, 张曙光.航空飞行器飞行动力学[M].北京:北京航空航天大学出版社, 2005:110-130.Fang Z P, Chen W C, Zhang S G. Dynamics of flight for aircraft[M]. Beijing: Beihang University Press, 2005: 110-130.