Manufacturing and Wireless Driving of a Permanent Magnetic Micro-robot
LI Xuanying, LI Zhenbo, MAO Ling, ZHANG Dawei, TANG Xiaoning, CHEN Jiapin
Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Research Institute of Micro/Nano Science and Technology, Shanghai Jiao Tong University, Shanghai 200240, China
This paper presents a new method to fabricate permanent magnetic (NdFeB) micro-robot as well as a motion-control algorithm that leads to "vibration-slip" motion of the micro-robot. MEMS (micro-electro-mechanical system) based graphical photolithography is introduced in robot fabricating process. A customized drive coil system for motion-control is designed. With its uniformly distributed magnetic field, the central cube space inside the coil system with a length of 2.5cm is set for micro-robot motion. The configuration of the whole embedded system for coil system driving is introduced. A dynamic model of the micro-robot is established, and mathematical simulation of its "vibration-slip" motion mode is carried out. Linear 2D motion is demonstrated on the micro-robot in experiment. The result indicates that the magnetic micro-robot's wireless linear motion speed reaches an average of 10 mm/s.
[1] 贾庆轩,魏秋霜,孙汉旭,等.并联微动机器人的研究现状[J].山东理工大学学报,2003,17(6):98-102. Jia Q X, Wei Q S, Sun H X, et al. Current research situation of parallel micro-robot[J]. Journal of Shandong University of Technology, 2003, 17(6): 98-102.[2] 赵然,李艳文,赵铁石,等.微机器人的研究现状与发展趋势[J].机械设计,2009,26(2):1-2,54. Zhao R, Li Y W, Zhao T S, et al. Present situation of researches and trend of development of micro-robots[J]. Mechanical Design, 2009, 26(2): 1-2,54.[3] Taylor R H, Stoianovici D. Medical robotics in computer-integrated surgery[J]. IEEE Transactions on Robotics and Automation, 2003, 19(5): 765-781. [4] 孙立宁,刘品宽,吴善强,等.管内移动微型机器人研究与发展现状[J].光学精密工程,2003,11(4):326-332. Sun L N, Liu P K, Wu S Q, et al. Current research and development situation of micro-in-pipe mobile robots[J]. Optics and Precision Engineering, 2003, 11(4): 326-332.[5] 张永顺,刘巍,张瑞侠,等.外磁场驱动医用微型机器人的研究现状与展望[J].机器人,2005,27(3):278-283. Zhang Y S, Liu W, Zhang R X, et al. Current research situation and prospect of medical micro-robot driven by external magnetic field[J]. Robot, 2005, 27(3): 278-283.[6] Donald B R, Levey C G, McGray C D, et al. An untethered, electrostatic, globally controllable MEMS micro-robot[J]. Journal of Microelectromechanical Systems, 2006, 15(1): 1-15. [7] Vollmers K, Frutiger D R, Kratochvil B E, et al. Wireless resonant magnetic microactuator for untethered mobile microrobots[J]. Applied Physics Letters, 2008, 92(14): 144103.[8] Mathieu J-B, Martel S, Yahia L H, et al. MRI systems as a mean of propulsion for a microdevice in blood vessels[C]//Annual International Conference of the IEEE Engineering in Medicine and Biology. Piscataway, USA: IEEE, 2003: 3419-3422.[9] 江河海.激光加工技术应用的发展及展望[J].光电子技术与信息,2001,14(4):1-12. Jiang H H. Prospect and development of application of laser processing technology[J]. Optoelectronic Technology & Information, 2001, 14(4): 1-12.[10] 巩蕊,李明.激光切割及其工艺问题的研究[J].华章,2011(20):259. Gong R, Li M. Research on laser cutting and the process problems[J]. Hua Zhang, 2011(20): 259.[11] 叶金文,李军,李芳,等.注射成型粘结稀土永磁体的进展[J].金属功能材料,2003,10(1):37-39. Ye J W, Li J, Li F, et al. Development on injection molding bonding-tombarthite permanent magnet[J]. Metallic Functional Materials, 2003, 10(1): 37-39.[12] 王跃林,苏以撒,王文.微电子机械系统[J].电子学报,1995,23(10):37-42. Wang Y L, Su Y S, Wang W. Micro electro mechanical systems[J]. Journal of Electronics, 1995, 23(10): 37-42.[13] Frix W M, Karady G G, Venetz B A. Comparison of calibration systems for magnetic field measurement equipment[J]. IEEE Transactions on Power Delivery, 1994, 9(1): 100-108. [14] Yesin K B, Villmers K, Nelson B J. Modeling and control of untethered biomicrorobots in a fluidic environment using electromagnetic fields[J]. International Journal of Robotics Research, 2006, 25(5/6): 527-536.