An Efficient Reconfiguration Planning Method for Mobile Type Modular Robots
HU Yanan1,2, MA Shugen1, LI Bin1, WANG Minghui1, WANG Yuechao1
1. State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China
胡亚南, 马书根, 李斌, 王明辉, 王越超. 移动型模块化机器人的高效重构规划方法[J]. 机器人, 2016, 38(4): 467-474,485.DOI: 10.13973/j.cnki.robot.2016.0467.
HU Yanan, MA Shugen, LI Bin, WANG Minghui, WANG Yuechao. An Efficient Reconfiguration Planning Method for Mobile Type Modular Robots. ROBOT, 2016, 38(4): 467-474,485. DOI: 10.13973/j.cnki.robot.2016.0467.
Abstract:The reconfiguration planning methods for modular robots based on the exhaustion idea have factorial time complexity with respect to the number of modules, which are difficult to be applied to the cases containing large numbers of modules. To solve this problem, an efficient reconfiguration planning method is proposed, which has linear time complexity with respect to the number of modules. The reconfiguration planning problem is viewed as an optimal control problem. By solving the Hamilton-Jacobi-Bellman equation, the value function and optimal control law defined on the state space are obtained. The domain of attraction of the value function determines the optimal goal for the individual modules, and the optimal trajectories to the optimal goals at different states can be obtained by applying the optimal control law. Thus, the combination explosion caused by calculating the corresponding relations between modules of two configurations can be avoided, and the optimal trajectories of the individual modules that satisfy their kinematic constraints can be obtained at the same time. Simulation results validate the feasibility and efficiency of the proposed method.
[1] 曹燕军,葛为民,张华瑾.一种新型模块化自重构机器人结构设计与仿真研究[J].机器人,2013,35(5):568-575, 606.Cao Y J, Ge W M, Zhang H J. Structure design and simulation analysis of an innovative modular self-reconfigurable robot-360bot[J]. Robot, 2013, 35(5): 568-575,606.
[2] Yim M, Shen W M, Salemi B, et al. Modular self-reconfigurable robot systems[J]. IEEE Robotics & Automation Magazine, 2007, 14(1): 43-52.
[3] Bhat P, Kuffner J, Goldstein S, et al. Hierarchical motion planning for self-reconfigurable modular robots[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA: IEEE, 2006: 886-891.
[4] Vassilvitskii S, Kubica J, Rieffel E, et al. On the general reconfiguration problem for expanding cube style modular robots [C]//IEEE International Conference on Robotics and Automation. Piscataway, USA: IEEE, 2002: 801-808.
[5] Yoshida E, Murata S, Kamimura A, et al. A motion planning method for a self-reconfigurable modular robot[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA: IEEE, 2001: 590-597.
[6] Dumitrescu A, Suzuki I, Yamashita M. Motion planning for metamorphic systems: Feasibility, decidability, and distributed reconfiguration[J]. IEEE Transactions on Robotics and Automation, 2004, 20(3): 409-418.
[7] Shen W M, Salemi B, Will P, et al. Hormone-inspired adaptive communication and distributed control for CONRO self-reconfigurable robots[J]. IEEE Transactions on Robotics and Automation, 2002, 18(5): 700-712.
[8] He X Y, Ma S G, Li B, et al. Study on turn motion of child rovers of a reconfigurable planetary rover system[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA: IEEE, 2005: 1407-1412.
[9] Hu Y N, Ma S G, Li B, et al. Reconfiguration planning for wheel-manipulator robots[C]//IEEE International Conference on Cyber Technology in Automation, Control and Intelligent Systems. Piscataway, USA: IEEE, 2015: 529-534.
[10] Osher S, Fedkiw R. Level set methods and dynamic implicit surfaces applied mathematical sciences[M]. New York, USA: Springer, 2003.
[11] Takei R, Tsai R. Optimal trajectories of curvature constrained motion in the Hamilton-Jacobi formulation[J]. Journal of Scientific Computing, 2013, 54(2-3): 622-644.
[12] 胡亚南.可重构轮手一体机器人群体构形动力学建模及运动规划研究[D].北京:中国科学院大学,2016. Hu Y N. Dynamics modeling and motion planning of the group configurations of reconfigurable wheel-manipulator robots[D]. Beijing: University of Chinese Academy of Sciences, 2016.
[13] van den Berg J, Guy S J, Lin M, et al. Reciprocal n-body collision avoidance[C]//14th International Symposium on Robotics Research. Berlin,Germany: Springer, 2011: 3-19.
[14] Sanderson C. Armadillo: An open source C++ linear algebra library for fast prototyping and computationally intensive experiments[R]. St Lucia, Australia: NICTA, 2010.