李宗刚, 马伟俊, 葛立明, 杜亚江. 一种2自由度胸鳍推进仿生箱鲀机器鱼转弯特性研究[J]. 机器人, 2016, 38(5): 593-602.DOI: 10.13973/j.cnki.robot.2016.0593.
LI Zonggang, MA Weijun, GE Liming, DU Yajiang. Research on Turning Characteristics of a Biomimetic Robotic Boxfish Driven by Pectoral Fin with Two Degrees of Freedom. ROBOT, 2016, 38(5): 593-602. DOI: 10.13973/j.cnki.robot.2016.0593.
Abstract:Turning characteristics of 2-DOF (degree of freedom) pectoral-fins propelled biomimetic robotic boxfish in three different cases are studied respectively, namely driven by unilateral pectoral fin, by two pectoral fins and by unilateral pectoral fin/caudal fin. First of all, the sinusoidal motion laws of pectoral fin and caudal fin are given. On this basis, the turning hydrodynamics models are established for the three cases. And then numerical methods are used to analyze characteristics of given-radius turnings when the fish is driven by unilateral pectoral fin, or by unilateral pectoral fin and caudal fin together, and also spot turnings when it is driven by bilateral pectoral fins. And corresponding turning conditions are also presented for each case. Experimental results show that the average angular velocity of turning achieves at 0.26 rad/s by unilateral pectoral fin and caudal fin propulsion. The maximum angular velocity of turning is at 0.314 rad/s, and the minimum radius of turning is 0.74 times of body length, when it is driven by unilateral pectoral fin. Average angular velocity of spot turning is 0.42 rad/s when it is driven by bilateral pectoral fins. Compared with the existing results, the designed robotic fish have more abundant behaviors of turning, the better maneuverability and the higher turning angular speed.
[1] 蔡月日,毕树生.胸鳍摆动推进模式仿生鱼研究进展[J]. 机械工程学报,2011,47(19):30-31. Cai Y R, Bi S S. Research advances of bionic fish propelled by oscillating paired pectoral foils[J]. Journal of Mechanical Engineering, 2011, 47(19):30-31.
[2] 王田苗,杨兴帮,梁建宏.中央鳍/对鳍推进模式的仿生自主水下机器人发展现状综述[J].机器人,2013,35(3):352-362,384. Wang T M, Yang X B, Liang J H. A survey on bionic autonomous underwater vehicles propelledby median and/or paired fin mode robot[J]. Robot, 2013, 35(3):352-362,384.
[3] Low K H. Modelling and parametric study of modular undulating fin rays for fish robots[J]. Machine Theory, 2009, 44(3):615-632.
[4] Low K H, Zhou C L, Zhong Y. Gait planning for steady swimming control of biomimetic fish robots[J]. Advanced Robotics, 2009, 23(7/8):805-829.
[5] Epstein M, Colgate J, Maclver M. Generating thrust with a biologically inspired robotic ribbon fin[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2006:2412-2417.
[6] Wang Z L, Hang G R, Wang Y W, et al. Embedded SMA wire actuated biomimetic fin:A module for biomimetic underwater propulsion[J]. Smart Materials and Structures, 2008, 17(2):1-12.
[7] 杭观荣.基于肌肉性静水骨骼原理的机器乌贼原型关键技术研究[D].哈尔滨:哈尔滨工业大学,2009. Hang G R. Key technologies of robot aquid prototype based on the principle of muscular hydrostat[D]. Harbin:Harbin Institute of Technology, 2009.
[8] 张永华,何健慧,贾来兵.仿生蓝点魟胸鳍在两种波动模式推进力的比较[J].机械工程学报,2012,48(18):166-176. Zhang Y H, He J H, Jia L B. Comparative analysis of thrust generation of biomimetic bluespotted stingray pectoral fin under two undulating propulsion patterns[J]. Journal of Mechanical Engineering, 2012, 48(18):166-176.
[9] 何建慧,张晕华.仿生机器鱼鳍波状推进速度的理论分析和研究测试[J].水动力学研究与发展,2015,30(3):330-337. He J H, Zhang Y H. Theoretical and experimental research on the undulating propulsion velocity of a biomimetic robotic fin[J]. Chinese Journal of Hydrodynamics, 2015, 30(3):330-337.
[10] Suzumori K, Endo S, Kanda T, et al. Bending pneumatic rubber actuator realizing soft-bodied manta swimming robot[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2007:4975-4980.
[11] Ma H W, Cai Y R, Wang Y L. A biomimetic cownose ray robot fish with oscillating and chordwise twisting flexible pectoral fins[J]. Industrial Robot, 2015, 42(3):214-221.
[12] 牛传猛,毕树生,蔡月日,等.胸鳍摆动推进仿生鱼的设计及水动力实验[J].机器人,2014,36(5):535-543. Niu C M, Bi S S, Cai Y R, et al. Design and hydrodynamic experiments on bionic robotic fish with oscillating pectoral fins[J]. Robot, 2014, 36(5):535-543.
[13] 杨少波,韩小云,张代兵,等.一种新型的胸鳍摆动模式推进机器鱼设计与实现[J].机器人,2008,30(6):508-514. Yang S B, Han X Y, Zhang D B, et al. Design and development of a new kind of pectoral oscillation propulsion robot fish[J]. Robot, 2008, 30(6):508-514.
[14] Low K H, Zhou C L, Ong TW, et al. Modular design and initial gait study of an amphibian robotic turtle[C]//IEEE International Conference on Robotics and Biomimetics. Piscataway, USA:IEEE, 2008:535-540.
[15] Zhao W, Hu Y H, Wang L. Construction and central pattern generator-based control of a flipper-actuated turtle-like underwater robot[J]. Advanced Robotics, 2009, 23(1/2):19-43.
[16] 田伟程.多鳍水下仿生机器人的结构与运动控制[D].北京:北京航空航天大学,2012. Tian W C. Structural design and motion control of multi-fin underwater bionic robot[D]. Beijing:Beihang University, 2012.
[17] Kato N, Furushima M. Pectoral fin model for maneuver of underwater vehicle[C]//Symposium on Autonomous Underwater Vehicle Technology. Piscataway, USA:IEEE, 1996:49-56.
[18] Kato N, Inaba T. Guidance and control of fish robot with apparatus of pectoral fin motion[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 1998:446-451.
[19] Kato N. Hydrodynamic characteristics of a mechanical pectoral fin[J]. Journal of Fluid Engineering, 1999, 121(3):605-613.
[20] Crespi A, Lachat D, Pasquier A. Controlling swimming and crawling in a fish robot using a central pattern generator[J]. Autonomous Robots, 2008, 25(1/2):3-13.
[21] Kodati P, Hinkle J, Deng X Y. Microautonomous robotic ostraciiform (MARCO):Hydrodynamics, design, and fabrication[J]. IEEE Transactions on Robotics, 2008, 24(1):105-117.
[22] Barbera G, Pi L J, Deng X Y. Attitude control for a pectoral fin actuated bio-inspired robotic fish[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2011:526-531.
[23] Hu Y H, Zhao W, Xie G M, et al. Development and target following of vision-based autonomous robotic fish[J]. Robotica, 2009, 27(7):1075-1089.
[24] Yu J Z, Su Z S, Wang M, et al. Control of yaw and pitch maneuvers of a multilink dolphin robot[J]. IEEE Transactions on Robotics, 2012, 28(2):318-329.
[25] Wu Z X, Yu J Z, Su Z S, et al. Towards an Esox lucius inspired multimodal robotic fish[J]. Science China:Information Sciences, 2015, 58(5):No.052203.
[26] Long Jr J H, Sehumaeher J, Livingston N, et al. Four flippers or two? Tetrapodal swimming with an aquatic robot[J]. Bioinspiration & Biomimetice, 2006, 1(1):20-29.
[27] 李宗刚,毛著元,高溥,等.一种2自由度胸鳍推进机构设计与动力学分析[J].机器人,2016,38(1):82-90. Li Z G, Ma Z Y, Gao P, et al. Design and dynamic analysis of pectoral-fin propelled mechanism with two degrees of freedom[J]. Robot, 2016, 38(1):82-90.
[28] Blake RW. The mechanics of labriform locomotion. 2. An analysis of the recovery stroke and the overall fin beat cycle propulsive efficiency in the angelfish[J]. Journal of Experimental Biology, 1980, 85(4):337-342.
[29] Lauder G V, Anderson E J, Hunter I W, et al. Fish biorobotics:Kinematics and hydrodynamics of self-propulsion[J]. Journal of Experimental Biology, 2007, 210(16):2767-2780.
[30] Webb P W. Kinematics of pectoral fin propulsion in Cymatogaster-aggregata[J]. Journal of Experimental Biology, 1973, 59(3):697-710.
[31] 王兆立,苏玉民,王晓飞,等.仿胸鳍推进系统的水动力实验研究[J].哈尔滨工业大学学报,2010,42(7):1141-1144. Wang Z L, Su Y M, Wang X F, et al. Experimental study on the hydrodynamic performance analysis of a pectoral fin propulsive system[J]. Journal of Harbin Institute of Technology, 2010, 42(7):1141-1144.