[1] Danson E F S. Technology and applications of autonomous underwater vehicles[M]. Boca Raton, USA: CRC Press, 2003.[2] Tripp S T. Autonomous underwater vehicles (AUVs): A look at coast guard needs to close performance gaps and enhance current mission performance[R]. Groton, USA: Coast Guard Research and Development Center, 2006.[3] Dowdeswell J A, Evans J, Mugford R, et al. Autonomous underwater vehicles (AUVs) and investigations of the ice-ocean interface: Deploying the Autosub AUV in Antarctic and Arctic waters[J]. Journal of Glaciology, 2008, 54(187): 661-672. [4] Bandyopadhyay P R. Trends in biorobotic autonomous undersea vehicles[J]. IEEE Journal of Oceanic Engineering, 2005, 30(1): 109-139. [5] Triantafyllou M S, Triantafyllou G S. An efficient swimming machine[J]. Scientific American, 1995, 272(3): 40-48. [6] Sfakiotakis M, Lane D M, Davies J B C. Review of fish swimming modes for aquatic locomotion[J].IEEE Journal of Oceanic Engineering, 1999, 24(2): 237-252. [7] Webb P W. Form and function in fish swimming[J]. Scientific American, 1984, 251(1): 58-68.[8] Barrett D S. The design of a flexible hull undersea vehicle propelled by an oscillating foil[D]. Boston, Massachusetts, USA: Massachusetts Institute of Technology, 1994.[9] 喻俊志,陈尔奎,王硕,等.仿生机器鱼研究的进展与分析[J].控制理论与应用,2003,20(4):485-491. Yu J Z, Chen E K, Wang S, et al. Research evolution and analysis of biomimetic robot fish[J]. Control Theory & Applications, 2003, 20(4): 485-491.[10] 1 & 1 INTERNET AG. Robotic-fish[EB/OL]. [2012-08-05]. http://www.robotic-fish.net/index.php?lang=en&id=robots.[11] Kemp M, Hobson B, Janet J, et al. Assessing the performance of oscillating fin thruster vehicles[C]//International Symposium on Unmanned Untethered Submersible Technology (UUST). Lee, New Hampshire, USA: Autonomous Undersea Systems Institute, 2001: 1-9.[12] Fish F E, Lauder G V, Mittal R, et al. Conceptual design for the construction of a biorobotic AUV based on biological hydrodynamics[C]//International Symposium on Unmanned Untethered Submersible Technology. Durham, New Hampshire, USA: University of New Hampshire-Marine Systems Press, 2003: 1-8.[13] Kato N. Control performance in the horizontal plane of a fish robot with mechanical pectoral fins[J]. IEEE Journal of Oceanic Engineering, 2000, 25(1): 121-129. [14] Georgiades C, German A, Hogue A, et al. AQUA: An aquatic walking robot[C]//IEEE/RSJ International Conference on Intelligent robots and Systems. Piscataway, NJ, USA: IEEE, 2004: 3525-3531.[15] Altendorfer R, Moore N, Komsuoglu H, et al. RHex: A biologically inspired hexapod runner[J]. Autonomous Robots, 2001, 11(3): 207-213. [16] Long Jr J H, Schumacher J, Livingston N, et al. Four flippers or two? Tetrapodal swimming with an aquatic robot[J]. Bioinspiration & Biomimetics, 2006, 1(1): 20-29. [17] Low K H, Zhou C L, Ong T W, et al. Modular design and initial gait study of an amphibian robotic turtle[C]//IEEE International Conference on Robotics and Biomimetics. Piscataway, NJ, USA: IEEE, 2008: 535-540.[18] Licht S C. Biomimetic oscillating foil propulsion to enhance underwater vehicle agility and maneuverability[D]. Boston, Massachusetts, USA : Massachusetts Institute of Technology, 2008.[19] Licht S, Polidoro V, Flores M, et al. Design and projected performance of a flapping foil AUV[J]. IEEE Journal of Oceanic Engineering, 2004, 29(3): 786-794. [20] iRobot. Advanced platforms[EB/OL]. [2012-08-05]. http://www.irobot.com/us/cool_stuff/Research/Advanced_ Platforms.aspx.[21] Geder J D, Ramamurti R, Palmisano J. Four-fin bio-inspired UUV: Modeling and control solutions[C]//ASME 2011 International Mechanical Engineering Congress & Exposition. New York, USA: ASME, 2011: 1-10.[22] Zhao W, Hu Y H, Wang L. Construction and central pattern generator-based control of a flipper-actuated turtle-like underwater robot[J]. Advanced Robotics, 2009, 23(1/2): 19-43.[23] Han B, Luo X, Wang X J, et al. Mechanism design and gait experiment of an amphibian robotic turtle[J]. Advanced Robotics, 2011, 25(16): 2083-2097. [24] 田伟程.多鳍水下仿生机器人的结构设计与运动控制[D].北京:北京航空航天大学,2012. Tian W C. Structural design and motion control of multi-fin underwater bionic robot[D]. Beijing: Beihang University, 2012.[25] Brower T P L. Design of a manta ray inspired underwater propulsive mechanism for long range, low power operation[D]. Medford, Masssachusetts, USA: Tufts University, 2006.[26] Suzumori K, Endo S, Kanda T, et al. Bending pneumatic rubber actuator realizing soft-bodied Manta swimming robot[C]//IEEE International Conference on Robotics and Automation. Piscataway, NJ, USA: IEEE, 2007: 4975-4980.[27] Drives & Control. Artificial rays take to the water[EB/OL]. [2012-08-06]. http://www.drives.co.uk/fullstory.asp?id=1963.[28] EvoLogics. Subsea glider with fin ray effect[EB/OL]. [2012-08-06]. http://www.evologics.de/en/products/glider/index.html.[29] Festo. AquaPenguin[EB/OL]. [2012-08-06]. http://www.festo.com/cms/en-us_us/10290_10344.htm.[30] Festo. A biomechatronic overall concept[EB/OL]. [2012-08-06]. http://www.festo.com/net/SupportPortal/Downloads/42074/AquaPenguin_en.pdf.[31] Zhou C L, Low K H. Better endurance and load capacity: An improved design of manta ray robot (RoMan-II)[J]. Journal of Bionic Engineering, 2010, 7(suppl): 137-144.[32] Zhou C L, Low K H. Design and locomotion control of a biomimetic underwater vehicle with fin propulsion[J]. IEEE/ASME Transactions on Mechatronics, 2012, 17(1): 25-35. [33] Chen Z, Um T I, Bart-Smith H. Ionic polymer-metal composite enabled robotic manta ray[C]//Proceedings of SPIE -- The International Society for Optical Engineering. Bellingham, USA: SPIE, 2011: 1-12.[34] Wang Z L, Wang Y W, Li J, et al. A micro biomimetic manta ray robot fish actuated by SMA[C]//IEEE International Conference on Robotics and Biomimetics. Piscataway, NJ, USA: IEEE, 2009: 1809-1813.[35] 王扬威,王振龙,李健,等.形状记忆合金驱动仿生蝠鲼机器鱼的设计[J].机器人,2010,32(2):256-261. Wang Y W, Wang Z L, Li J, et al. Development of a biomimetic manta ray robot fish actuated by shape memory alloy[J]. Robot, 2010, 32(2): 256-261.[36] Yang S B, Qiu J, Han X Y. Kinematics modeling and experiments of pectoral oscillation propulsion robotic fish[J]. Journal of Bionic Engineering, 2009, 6(2): 174-179. [37] 杨少波.牛鼻鳞泳动动力学分析与仿生机器鱼研究[D].长沙:国防科技大学,2010. Yang S B. Hydrodynamic analysis of cownose ray's swimming and research of bionic robotic fish[D]. Changsha: National University of Defense Technology, 2010.[38] Cai Y R, Bi S S, Zheng L C. Design and experiments of a robotic fish imitating cow-nosed ray[J]. Journal of Bionic Engineering, 2010, 7(2): 120-126. [39] Cai Y R, Bi S S, Zheng L C. Design optimization of a bionic fish with multi-joint fin rays[J]. Advanced Robotics, 2012, 26(1-2): 177-196. [40] Epstein, M, Colgate J, MacIver M. Generating thrust with a biologically inspired robotic ribbon fin[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, NJ, USA: IEEE, 2006: 2412-2417.[41] Low K H, Willy A. Development and initial investigation of NTU robotic fish with modular flexible fins[C]//IEEE International Conference on Mechatronics and Automation. Piscataway, NJ, USA: IEEE, 2005: 958-963.[42] Low K H, Willy A. Biomimetic motion planning of an undulating robotic fish fin[J]. Journal of Vibration and Control, 2006, 12(12): 1337-1359. [43] Zhou C L, Low K H. Kinematic modeling framework for biomimetic undulatory fin motion based on coupled nonlinear oscillators[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, NJ, USA: IEEE, 2010: 934-939.[44] Low K H. Modelling and parametric study of modular undulating fin rays for fish robots[J]. Mechanism and Machine Theory, 2009, 44(3): 615-632. [45] Low K H, Zhou C L, Zhong Y. Gait planning for steady swimming control of biomimetic fish robots[J]. Advanced Robotics, 2009, 23(7/8): 805-829.[46] Willy A, Low K H. Initial experimental investigation of undulating fin[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, NJ, USA: IEEE, 2005: 2059-2064.[47] Willy A, Low K H. Development and initial experiment of modular undulating fin for untethered biorobotic AUVs[C]//IEEE International Conference on Robotics and Biomimetics. Piscataway, NJ, USA: IEEE, 2005: 45-50.[48] Simons D G, Bergers M M C, Henrion S, et al. A highly versatile autonomous underwater vehicle with biomechanical propulsion[C]//Proceedings of OCEANS 2009 IEEE Bremen: Balancing Technology with Future Needs. Piscataway, NJ, USA: IEEE, 2009: 1-6.[49] Rahman M M, Toda Y, Miki H.\columnbreak Computational study on a squid-like underwater robot with two undulating side fins[J]. Journal of Bionic Engineering, 2011, 8(1): 25-32. [50] Takagi, K, Yamamura M, Luo Z W, et al. Development of a rajiform swimming robot using ionic polymer artificial muscles[J]//IEEE International Conference on Intelligent Robots and Systems. Piscataway, NJ, USA: IEEE, 2006: 1861-1866.[51] Zhang Y H, Song Y, Yang J, et al. Numerical and experimental research on modular oscillating fin[J]. Journal of Bionic Engineering, 2008, 5(1): 13-23. [52] Zhang D B, Hu D, Shen L C, et al. Design of an artificial bionic neural network to control fish-robot's locomotion[J]. Neurocomputing, 2008, 71(4-6): 648-654. [53] Zhang Y H, He J H, Yang J, et al. A computational fluid dynamics (CFD) analysis of an undulatory mechanical fin driven by shape memory alloy[J]. International Journal of Automation and Computing, 2006, 3(4): 374-381. [54] Zhang Y H, Jia L B, Yang J, et al. A numerical analysis of an undulatory mechanical fin driven by shape memory alloy[C]//IEEE International Conference on Robotics and Biomimetics. Piscataway, NJ, USA: IEEE, 2006: 73-78.[55] Zhang Y H, Jia L B, Zhang S W, et al. Computational research on modular undulating fin for biorobotic underwater propulsor[J]. Journal of Bionic Engineering, 2007, 4(1): 25-32. [56] 章永华,何建慧,张世武,等.NiTi形状记忆合金驱动的仿生鱼鳍的研究[J].机器人,2007,29(3):207-213. Zhang Y H, He J H, Zhang S W, et al. Research on biomimetic fish fin driven by NiTi shape memory alloy[J]. Robot, 2007, 29(3): 207-213.[57] 章永华.柔性仿生波动鳍推进理论与实验研究[D].合肥:中国科学技术大学,2008. Zhang Y H. Theoretic and experimental research on propulsion flexible biomimetic undulatory robotic fin[D]. Hefei: University of Science and Technology of China, 2008.[58] 宋艳.基于形状记忆合金的仿生鳍条结构设计及实验研究[D].合肥:中国科学技术大学,2009. Song Y. The design of structure and experiment on flexible biomimetic fish fin based on shape memory alloy[D]. Hefei: University of Science and Technology of China, 2009.[59] 王光明,胡天江,李非,等.长背鳍波动推进游动研究[J].机械工程学报,2006,42(3):88-92. Wang G M, Hu T J, Li F, et al. Research on swimming by undulatory long dorsal fin propulsion[J]. Chinese Journal of Mechanical Engineering, 2006, 42(3): 88-92.[60] 林龙信,陈璟,沈林成,等.柔性长鳍波动仿生推进器的波动控制研究[J].信息与控制,2007,36(5):628-633. Lin L X, Chen J, Shen L C, et al. On undulatory control of flexible fin in undulatory biomimetic propulsor[J]. Information and Control, 2007, 36(5): 628-633.[61] 张代兵.波动鳍仿生水下推进器及其控制方法研究[D].长沙:国防科技大学,2007. Zhang D B. Research on the underwater bionic undulatory-fin propulsor and its control method[D]. Changsha: National University of Defense Technology, 2007.[62] 王光明.仿鱼柔性长鳍波动推进理论与实验研究[D].长沙:国防科技大学,2007. Wang G M. Theoretic and experimental research on propulsion by bionic undulatory fin[D]. Changsha: National University of Defense Technology, 2007.[63] 谢海斌,张代兵,沈林成.基于柔性长鳍波动推进的仿生水 下机器人设计与实现[J].机器人,2006,28(5):525-535. Xie H B, Zhang D B, Shen L C. Design and realization of a bionic underwater vehicle propelled by undulation of a long flexible fin[J]. Robot, 2006, 28(5): 525-535.[64] 谢海斌.基于多波动鳍推进的仿生水下机器人设计、建模 与控制[D].长沙:国防科技大学,2006. Xie H B. Design, modeling, and control of bionic underwater vehicle propelled by multiple undulatory fins[D]. Changsha: National University of Defense Technology, 2006.[65] Shang L J, Wang S, Tan M, et al. Motion control for an underwater robotic fish with two undulating long-fins[C]//IEEE Conference on Decision and Control. Piscataway, NJ, USA: IEEE, 2009: 6478-6483.[66] Wang Z L, Hang G R, Wang Y W, et al. Embedded SMA wire actuated biomimetic fin: A module for biomimetic underwater propulsion[J]. Smart Materials and Structures, 2008, 17(2): 1- 12.[67] 杭观荣.基于肌肉性静水骨骼原理的机器乌贼原型关键技 术研究[D].哈尔滨:哈尔滨工业大学,2009. Hang G R. Key technologies of robot squid prototype based on the principle of muscular hydrostat[D]. Harbin: Harbin Institute of Technology, 2009.[68] Drucker E G, Lauder G V. Locomotor forces on a swimming fish: Three-dimensional vortex wake dynamics quantified using digital particle image velocimetry[J]. The Journal of Experimental Biology, 1999, 202: 2393-2412.[69] Chen G, Le J, Xu L F, et al. A review on PIV with image measuring techniques[C]//2001 XXIX International Association of Hydraulic Engineering and Research Congress. Beijing, China: IAHR, 2001: 946-954.[70] Nauen J C, Lauder G V. Quantification of the wake of rainbow trout Oncorhynchus mykiss) using three-dimensional stereoscopic digital particle image velocimetry[J]. The Journal of Experimental Biology, 2002, 205: 3271-3279.[71] Tytell E D, Lauder G V. The hydrodynamics of eel swimming I – Wake structure[J]. The Journal of Experimental Biology, 2004, 207: 1825-1841.[72] Tytell E D. The hydrodynamics of eel swimming II – Effect of swimming speed[J]. The Journal of Experimental Biology, 2004, 207: 3265-3279. |