Mechanism Design and Analysis of a Hybrid-Input Parallel Rehabilitation Robot with Humanoid Gaits
JIANG Lijie1, WANG Liangyi1, WANG Yong1, CHEN Jin2
1. School of Mechanical Engineering, Hefei University of Technology, Hefei 230009, China;
2. Department of Rehabilitation Medicine, Anhui Provincial Hospital, Hefei 230001, China
Abstract:Owing to the absence of the rehabilitation robot for application in the community and family, a novel robot is developed for hemiplegic patients treating with different strides in the community and family. By exploring the characteristics of normal gaits and hemiplegic patient gaits in rehabilitation treating process, a variable-stride hybrid-input rehabilitation robot is designed for community and family applications on the basis of parallel mechanism. The dimensions of robot's actuator are calculated based on the normal gait of adults with 185 cm height, and the kinematics, the workspace and the control law of robot's actuator are analyzed and simulated, which prove the feasibility of the design scheme in theory. The prototype test results show that the robot can make the subject perform gait motion with the shoulder joint range from -14.8° to 23.7°, the knee joint range from 1.8° to 66.5° and the step length less than 68 cm through changing the length of the crank and the angle of the adjusting rod.
[1] Ostwald S K, Davis S, Hersch G, et al. Evidence-based educational guidelines for stroke survivors after discharge home[J]. Journal of Neuroscience Nursing, 2008, 40(3): 173-191.
[2] 王涛,倪朝民,范文祥,等.社区康复对脑卒中患者功能和生存质量的远期疗效观察[J].中国康复医学杂志,2009,24(10):934-937.Wang T, Ni C M, Fan W X, et al. Long-term effect of community-based rehabilitation on function and quality of life in stroke patients[J]. Chinese Journal of Rehabilitation Medicine, 2009, 24(10): 934-937.
[3] 张付祥,付宜利,王树国.康复机器人研究进展[J].河北工业科技,2005,22(2):100-105.Zhang F X, Fu Y L, Wang S G. Overview of rehabilitation robots research[J]. Hebei Journal of Industrial Science and Technology, 2005, 22(2): 100-105.
[4] Wang H B, Wu J S, Wang Y B, et al. Research on the lower limb gait rehabilitation[C]//IEEE International Conference on Mechatronics and Automation. Piscataway, USA: IEEE, 2014: 1243-1247.
[5] Krebs H I, Hogan N. Overview of clinical trials with MIT-MANUS: A robot-aided neuro-rehabilitation facility[J]. Technology and Health Care, 1999, 7(6): 419-423.
[6] Reinkensmeyer D J, Takahashi C D, Timoszyk W K. Design of robot assistance for arm movement therapy following stroke[J]. Advanced Robotics, 2000, 14(7): 625-637.
[7] Burgar C G, Lum P S, Scremin A M E, et al. Robot-assisted upper-limb therapy in acute rehabilitation setting following stroke: Department of veterans affairs multisite clinical trial[J]. Journal of Rehabilitation Research and Development, 2011, 48(4): 445-458.
[8] 张秀峰,季林红,王景新.辅助上肢运动康复机器人技术研究[J].清华大学学报:自然科学版,2006,46(11):1864-1867.Zhang X F, Ji L H, Wang J X. Robotic aid for upper limb rehabilitation[J]. Journal of Tsinghua University: Science and Technology, 2006, 46(11): 1864-1867.
[9] 潘礼正,宋爱国,徐国政,等.基于动态插补方法的上肢康复机器人运动控制[J].机器人,2012,34(5):539-545.Pan L Z, Song A G, Xu G Z, et al. Upper-limb rehabilitation robot motion control based on dynamic interpolation[J]. Robot, 2012, 34(5): 539-545.
[10] Hidler J, Nichols D, Pelliccio M, et al. Multicenter randomized clinical trial evaluating the effectiveness of the Lokomat in subacute stroke[J]. Neurorehabilitation and Neural Repair, 2009, 23(1): 5-13.
[11] Metrailler P, Blanchard V, Perrin I, et al. Improvement of rehabilitation possibilities with the MotionMakerTM[C]//IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics. Piscataway, USA: IEEE, 2006: 359-364.
[12] 秦涛,张立勋.考虑跖趾关节运动的踏板式步行康复机器人运动规划[J].机器人,2014,36(3):330-336.Qin T, Zhang L X. Motion planning of a footpad-type walking rehabilitation robot considering motion of metatarsophalangeal joint[J]. Robot, 2014, 36(3): 330-336.
[13] 胡进,侯增广,陈翼雄,等.下肢康复机器人及其交互控制方法[J].自动化学报,2014,40(11):2377-2390.Hu J, Hou Z G, Chen Y X, et al. Lower limb rehabilitation robots and interactive control methods[J]. Acta Automatica Sinica, 2014, 40(11): 2377-2390.
[14] Peng L, Hou Z G, Wang W Q. Dynamic modeling and control of a parallel upper-limb rehabilitation robot[C]//IEEE/RAS-EMBS International Conference on Rehabilitation Robotics. Piscataway, USA: IEEE, 2015: 532-537.
[15] Abbasnejad G, Yoon J, Lee H. Optimum kinematic design of a planar cable-driven parallel robot with wrench-closure gait trajectory[J]. Mechanism and Machine Theory, 2016, 99: 1-18.
[16] 边辉,刘艳辉,梁志成,等.并联 2-RRR/UPRR 踝关节康复机器人机构及其运动学[J].机器人,2010,32(1):6-12.Bian H, Liu Y H, Liang Z C, et al. A novel 2-RRR/UPRR robot mechanism for ankle rehabilitation and its kinematics[J]. Robot, 2010, 32(1): 6-12.
[17] 印松.踝关节康复机器人设计及人-机运动映射分析[J].中国机械工程,2012,23(21):2552-2556.Yin S. Design and human-machine motion mapping analysis of an ankle rehabilitation robot[J]. China Mechanical Engineering, 2012, 23(21): 2552-2556.
[18] 禹润田,方跃法,郭盛.绳驱动并联踝关节康复机构设计及运动性能分析[J].机器人,2015,37(1):53-62,73.Yu R T, Fang Y F, Guo S. Design and kinematic performance analysis of a cable-driven parallel mechanism for ankle rehabilitation[J]. Robot, 2015, 37(1): 53-62,73.
[19] 范泽峰,李娟,李伟达,等.多连杆式下肢康复训练机器人结构优化与仿真[J].机械传动,2015,39(11):67-71.Fan Z F, Li J, Li W D, et al. Structure optimization and simulation of a multi-link type lower limb rehabilitation robot[J]. Journal of Mechanical Transmission, 2015, 39(11): 67-71.
[20] 李香平,舒彬,顾小红,等.中国正常成人步行时空参数分析[J].中国康复医学杂志,2012,27(3):227-230.Li X P, Shu B, Gu X H, et al. Temporal-spatial parameters of gait: Reference data of normal subjects from Chinese adults[J]. Chinese Journal of Rehabilitation Medicine, 2012, 27(3): 227-230.
[21] 葛正浩,任子文,李晓芳,等.混合驱动机构研究综述[J].机械设计,2006,23(2):1-3.Ge Z H, Ren Z W, Li X F, et al. Summarization on the study of composite driving mechanism[J]. Journal of Machine Design, 2006, 23(2): 1-3.