徐贺, 刘星, 张振宇, 伏虎. 铰接式五轮移动机器人接地角估计及滑转测量[J]. 机器人, 2013, 35(2): 208-217.DOI: 10.3724/SP.J.1218.2013.00208.
XU He, LIU Xing, ZHANG Zhenyu, FU Hu. Contact Angle and Slippage Estimation of an Articulated Mobile Robot with Five Wheels. ROBOT, 2013, 35(2): 208-217. DOI: 10.3724/SP.J.1218.2013.00208.
A general approach to kinematics modeling and analysis of articulated mobile robots traversing uneven terrain is described. Taking caster and camber into consideration, a full 6 DOF (degree of freedom) motion model is derived for a wheeled robot, and differential kinematics is derived for individual wheels in contact with ground. Then, forward and inverse kinematics models are given. During this process, slipping and wheel-terrain contact angle are considered. Based on the characteristics of rigid body movement, the contact angle is estimated according to the relationship of velocity of components. A passive fifth wheel is installed on the robot, and a slippage estimation method is given based on its kinematics model. Experiments on uneven terrain and sandlot are carried out to verify the effectiveness of the proposed contact angle and slippage estimation method.
[1] Hayati S, Richard V, Paul B, et al. The Rocky 7 rover: A Mars sciencecraft prototype[C]//IEEE International Conference on Robotics and Automation. Piscataway, NJ, USA: IEEE, 1997: 2458-2464.[2] Cunningham J, Corke P, Durrant-Whyte H, et al. Automated LHD's and underground trucks[J]. Australian Journal of Mining, 1999, 14: 51-53.[3] Muir P F, Neuman C P. Kinematic modeling of wheeled mobile robots[J]. Journal of Robotic Systems, 1987, 4(2): 281-340. [4] Rajagopalan R. A generic kinematic formulation for wheeled mobile robots[J]. Journal of Robotic Systems, 1997, 14(2): 77-91. [5] Yi B J, Kim W K. The kinematics for redundantly actuated omnidirectional mobile robots[J]. Journal of Robotic Systems, 2002, 19(6): 255-267. [6] Tarokh M, McDermott G J, Hayati S, et al. Kinematic modeling of a high mobility Mars rover[C]//IEEE International Conference on Robotics and Automation. Piscataway, NJ, USA: IEEE, 1999: 992-998.[7] Tarokh M, McDermott G J. Kinematics modeling and analyses of articulated rovers[J]. IEEE Transactions on Robotics, 2005, 21(4): 539-553. [8] Xu H, Xue K, Peng F L, et al. 3-D kinematics modeling for mobile robot with steering castered-and-cambered wheels[C]// IEEE International Conference on Mechatronics and Automation. Piscataway, NJ, USA: IEEE, 2007: 1345-1350.[9] 王佐伟,梁斌,吴宏鑫.六轮月球探测车运动学建模与分析[J].宇航学报,2003,24(5):456-462. Wang Z W, Liang B, Wu H X. Kinematical modeling and analysis of six-wheel lunar rover[J]. Journal of Astronautics, 2003, 24(5): 456-462.[10] 邓宗全,胡明,高海波,等.月球探测车的运动学建模[J].中国机械工程,2003,14(22):1911-1913. Deng Z Q, Hu M, Gao H B. Kinematics modeling of the lunar rover[J]. China Mechanical Engineering, 2003, 14(22): 1911-1913.[11] 刘方湖,马培荪,曹志奎,等.五轮铰接式月球机器人的运动学建模[J].机器人,2001,23(6):481-485,492. Liu F H, Ma P S, Cao Z K, et al. Kinematic modeling of a five-wheel articulated lunar robot[J]. Robot, 2001, 23(6): 481-485,492.[12] 居鹤华,曹亮,崔平远.基于模糊逻辑的月球车逆运动学求解方法[J].宇航学报,2006,27(4):643-647. Ju H H, Cao L, Cui P Y, et al. A method to solve inverse kinematics of lunar rover using fuzzy logic[J]. Journal of Astronautics, 2006, 27(4): 643-647.[13] Iagnemma K, Dubowsky S. Vehicle wheel-ground contact angle estimation: With application to mobile robot traction control[C]//7th International Symposium on Advances in Robot Kinematics. Netherlands: Springer, 2000: 137-146.[14] 宋小康,王越超,谈大龙,等.全地形移动机器人轮-地几何接触角估计[J].自动化学报,2008,34(7):778-783. Song X K, Wang Y C, Tan D L, et al. Wheel-terrain geometric contact angle estimation of all-terrain mobile robots[J]. Acta Automatica Sinica, 2008, 34(7): 778-783.[15] Lauria M, Piguet Y, Siegwart R. Octopus: An autonomous wheeled climbing robot[C]//5th International Conference on Climbing and Walking Robots. Westminster, UK: Professional Engineering Publishing Ltd, 2002: 315-322.